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Abstract— This paper presents a novel approach to map-
ping for mobile robots that exploits user interaction to semi-
autonomously create a labelled map of the environment. The
robot autonomously follows the user and is provided with
a verbal commentary on the current location with phrases
such as “Robot, we are in the office”. At the same time, a
metric point feature map is generated using fusion of laser
and advanced sonar measurements in a Kalman filter based
SLAM framework, which is later used for localization. When
mapping is complete, the robot generates an occupancy grid
for use in global task planning. The occupancy grid is created
using a novel laser scan registration scheme that relies on
storing the path of the robot along with associated local SLAM
features during mapping, and later recovering the path by
matching the associated local features to the final SLAM map.
The occupancy grid is segmented into labelled rooms using an
algorithm based on watershed segmentation and integration
of the verbal commentary. Experimental results demonstrate
our mobile robot creating SLAM and segmented occupancy
grid maps of rooms along a 70 metre corridor, and then using
these maps to navigate between rooms.

Index Terms— SLAM, advanced sonar, laser, occupancy
map, room segmentation

I. I NTRODUCTION

Most practical applications of mobile robotics require the
robot to travel autonomously between multiple locations,
typically requiring the robot to localize itself within a map
of the environment. Map building is therefore a fundamen-
tal problem for which a variety of solutions have been
used in previous work, including measurement by hand [4],
interactive guidance with manual control [11] or people fol-
lowing [1], and autonomous exploration [2]. Manual map
building is time-consuming and usually not considered a
practical solution for robots required to operate in different
environments. While autonomous exploration overcomes
this problem, dangers such as stairwells and automatic
doors can pose a real danger to robots with limited sensing.
Interactive guidance, particularly using automatic means
such as person following, offers a practical compromise
that allows the user to quickly highlight both areas of
interest and danger zones in a map.

An interactive mapping approach of this type was intro-
duced by Althaus and Christensen [1]. In their system, the
robot creates a topological map by autonomously following
a tour guide, who indicates each new location (node) by
sending signal to the robot through a wirelessly connected
laptop. The user also specifies the connections between
nodes, such asdoor, corridor androom. During navigation,
the robot corrects its odometry drift whenever passing

Fig. 1. SLAMbot following a tour guide during map generation.

through a door, travelling down a straight corridor, or
revisiting a charging station. While this scheme is simple
and efficient, a significant drawback is that the robot can
only be directed to locations identified by a node, since
free space is not explicitly represented in the map. Many
applications, such as cleaning the floor or finding a person
in a particular room, require the robot to navigate between
arbitrary points. Furthermore, the robot would benefit from
knowledge of the extent of free space occupied by each
room or corridor. Rather than relying on local sensing, such
information can be encoded directly into the map.

In this paper, we present an alternative solution to
interactive mapping which addresses these problems. The
map used for navigation consists of sonar features, and is
generated using a simultaneous localization and mapping
(SLAM) framework based on fused laser and sonar mea-
surements that we have described in [7]. Using this map,
the robot can localize itself to within a few centimetres
anywhere in the environment. In addition to the SLAM
map, our system generates an occupancy grid map with
segmentation information describing the extent of each
region of interest. This allows the robot to plan paths
between rooms and perform tasks on entire regions. Map
generation is simple and intuitive: a tour guide, followed
autonomously by the robot, describes each location in the
tour using simple voice commands such as“Robot, we are
in the office” (see Figure I). After generating the SLAM
and grid maps at the completion of the tour, the robot can
be sent back to any location using a voice command such
as “Robot, go to the office”.

Many occupancy grid based map building and localiza-
tion schemes using laser range measurements have been
proposed in previous work. A common approach is to first



generate a laser scan map by matching individual scan
collected during map building [10], [15]. The laser scan
map is easily converted into a grid map for path planning,
and localization is again provided by laser scan matching.
An important issues in the scan matching approach to
map building is a sensitivity to people and other transient
moving objects, which can been addressed by identifying
people and removing them from the scan [11].

Bourgault et al [2] use a similar mapping scheme to
ours, involving two maps: a feature map for accurate
localization generated using SLAM, and an occupancy
grid for planning and exploration. The occupancy grid is
generated by aligning each new laser scan using the current
pose of the robot estimated by SLAM. However, the main
drawback of this approach is that the SLAM feature map is
continuously corrected as features are re-observed, causing
the previously estimated path of the robot to become
invalid. The result is a smearing of the occupancy grid with
reduced certainty about the occupancy of each grid. Our
approach overcomes this problem by storing the robot path
and laser scans, and only generating the occupancy grid
after sufficient features have been collected for recovery
of the corrected path from a good SLAM map.

Our segmentation algorithm for dividing the occupancy
grid into regions such as rooms and corridors is based on
the watershed algorithm used in similar work on room
segmentation [3], [8]. However, our scheme is the first
to introduce an interactive approach to segmentation by
integrating room markers generated with verbal commands.

The following section provides an overview of our
experimental mobile robot, SLAMbot, and the architec-
ture of the mapping framework. Section III then briefly
describes our SLAM approach using fusion of laser and
sonar measurements, first described in [6], and introduces
our scheme for generating the occupancy grid, including a
novel approach to recovering the path of the robot. Section
IV follows with details of interactive room segmentation,
including people following, verbal marker generation and
grid segmentation. Finally, Section V presents experimental
results of our system mapping several locations around our
labs and using the map to navigate between rooms.

II. SYSTEM OVERVIEW

The testbed for our experiments is an in-house built
differential drive robot called SLAMbot (see fig. I). Sensing
capabilities include odometry, two advanced sonar arrays
and a Sick LMS laser range finder. Odometry is based on
2000 count wheel encoders on both driven wheels, which
are are polled at 10 ms intervals. The advanced sonar
sensors are capable of measuring range and bearing with
an standard error of 0.1◦ and 0.2 mm respectively, and
classifying sensed targets intoplanes, right angle corners
andedges[13]. The sensors are mounted on panning mech-
anisms which are continuously swept back and forth in a
270◦ arc. The Sick LMS200 generates time-of-flight laser
scans in a horizontal plane with 0.5◦ angular resolution and
1 cm range resolution at 36 Hz.

All processing is performed on-board and distributed
between a 2.8 GHz hyper-threaded Pentium 4 PC and
a 3.0 GHz Pentium 4 laptop, both running Linux. The
software is arranged in a three layered architecture from
low-level sensing and control to high level planning, with
programs at each level communicating through the Sockets
API. The lowest level contains a server program that
reads and distributes information from sensors, provides
closed-loop motor control, and implements low-level path
planning and obstacle avoidance using the distance trans-
form [12] in a local 10×10 metre area around the robot.
The middle level implements SLAM based on odometry,
laser and sonar measurements, stores laser measurements
and the robot path during map learning, and generates
the occupancy grid when learning is complete. During
task execution, the middle level also provides localization
information with respect to the generated grid map. Both
the lower and middle levels are processed on the desktop
PC. Finally the top level, processed on the laptop, im-
plements voice recognition and person following to guide
map learning. The IBM ViaVoice API is used for voice
recognition, with a simple fixed grammar of commands
and locations (lab, office, etc). During task execution, the
top level plans a safe global path using the path transform
[17] and generates set-points to guide the robot towards the
required goal.

III. L OCALIZATION AND MAPPING

Our implementation of SLAM is based on a Kalman
filter framework [5] using odometry, laser and advanced
sonar and is detailed in [7]. The following is a brief
overview of the scheme. The main novelty of our approach
is the fusion of laser and advanced sonar measurements to
improve the selection of map features. Firstly, laser mea-
surements help to remove phantom sonar features. Then,
segmentation of the laser scan into line segments is guided
by the detection of sonar corner and edge reflectors, and a
right-angle corner model is fitted to the intersection of lines
in the laser scan when the presence of a corner is confirmed
by sonar. Corner and plane features that are measured by
both advanced sonar and laser are fused by weighting
the measurements with their information matrices. The
laser line segments, fused laser/sonar corners (carrying
both position and orientation information) and sonar point
features extracted from clusters of edge or corner reflectors
occurring near laser line segments (typically corresponding
to doorjambs and wall mouldings) are added as features to
the SLAM map.

In [7], all processing was performed off-line from log
files using Matlab. The version used in the current work
implements all measurements except processing of line seg-
ments by the Kalman filter. The system has been rewritten
in C and is now capable of real-time on-board SLAM
with at least 300 point landmarks. Due to the absence of
line features, the current implementation is likely to have
difficulty localizing is areas with few corners or edges (ie.
long corridors with flat walls), but this has yet to cause
problems in practice. In future work, we intend to add line
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Fig. 2. Path correction using scan matching with local features.

features to our real-time implementation, as well as a loop-
closing algorithm.

A. Path Tracking

While the sparse point features map created by SLAM
provides accurate localization, global path planning and
obstacle avoidance with the commonly used distance trans-
form based algorithms require an accurate occupancy grid
representation of the environment. If the pose of the robot
in a static environment is accurately known at all times,
generating an occupancy grid using registered laser scans
is a trivial problem. We now present a method to accurately
recover the path of the robot to generate such a grid.

Registration of laser scans using SLAM based on-the-
fly estimation of the current robot position to generate an
occupancy grid was demonstrated in [2]. As noted earlier,
problems with this approach arise when features are re-
observed and the entire map is updated. For example,
consider a robot travelling to the end of a long corridor and
returning while suffering from odometry drift in process.
As the robot re-observers a map feature near the initial
position, the robot pose, feature location, and location of all
correlated features in the map will be updated. For a typical
corridor of 40 metres or so in length, even a small angular
correction by the robot at one end may cause correlated
features at the other end to be corrected by a shift of several
metres. Such a shift causes a serious divergence between
the feature map and occupancy grid.

To address this problem, an alternative approach involves
periodically recording the robot pose and associated laser
scan during mapping and delaying grid generation until
the SLAM map has sufficiently converged so that the
entire path can be corrected. One way to achieve this is
to periodically store the robot pose in the Kalman filter
state vector, so that the stored robot path is automatically
corrected each time the map is updated [9]. However,
increasing size of the state vector has the undesirable effect
of increasing the filter update time.

In this paper, we propose an alternative solution inspired
by scan matching and illustrated in Figure 2. Based on
the reasonable assumption that the SLAM map is always
locally correct, our approach is to associate the periodically
stored robot pose with local point features. As the map

is updated, the path is also corrected provided the local
configuration of point features does not change signifi-
cantly. The scheme is implemented as follows: for every
1 meter of travel or change in orientation of the robot by
30◦, the most recent laser scan is stored together with the
position of point features in the local neighbourhood, ex-
pressed in the local robot frame. Information about feature
correspondence is also stored to ease association in the
reconstruction stage. To recover the stored position of the
robot at a later time, a process identical to scan matching
is adopted. Assuming the correspondence between two or
more local features (shown as circles in Figure 2) and map
points (shown as error ellipses) is known, the equations
described in [14] (Appendix C) are applied to recover the
pose of the robot in the SLAM map. The accuracy of the
result increases as more features are used, since the local
configuration of points is likely to change between initially
storing the path and the final SLAM map.

B. Occupancy grid generation

After correcting the complete path of the robot in the
SLAM map by applying the process described above, the
registered laser scans can be assembled into an occupancy
grid. The first step in grid generation is to find a suitable
rotation of the SLAM map to minimize the required
number of grid cells. This not only reduces the memory
requirements of the occupancy, but also minimizes the
computational expense of path planning since fewer cells
need to be examined in the computation of the distance
transform. The required orientation is found using an
approximate numerical solution, by rotating the path from
0 to 90◦ in 5◦ steps and choosing the orientation that
minimizes the area of a rectangular bounding box. The
stored robot path and registered laser scans are all rotated
by this angle to align with the frame of the occupancy grid.

To calculate the occupancy values, each cell is initially
set to a value of zero (occupied). Free space is then
“carved” out as laser scans are processed by incrementing
the value of each cell for every laser beam passing through
it. To minimize the effect of orientation error, laser beams
are only traced to a maximum range of 7 metres. After all
scans have been processed, a fixed threshold is applied to
determine whether the count in each cell is sufficiently high
to consider it unoccupied. This accumulation and thresh-
olding process ensures that the effect of time registration
errors between stored laser scans and robot positions (or
similar sources of error) is minimized.

While the above scheme is less sophisticated than al-
ternative frameworks such as the probabilistic occupancy
grid used in [2], the result is sufficient for path planning.
In practice, the accuracy of the occupancy grid is limited
only by the accuracy of the SLAM map. Furthermore,
our approach does not require special attention to be paid
to moving objects, unlike the scan matching algorithm
described in [11]. However, the main advantage of our
approach is computational efficiency: path correction and
occupancy map generation for about 700 path points/laser
scans requires only 1.4 seconds of on-board processing



Fig. 3. People tracking in a segmented laser scan. The tracked person
indicated by large circle and robot position/bearing shown by arrow.

time. This suggests the possibility of generating smaller
grid maps on-the-fly during map learning.

IV. I NTERACTIVE ROOM SEGMENTATION

Interactive segmentation of the map into labelled rooms
is a two stage process. First, the user places virtual markers
in the map by verbally describing each location during map
building. The markers are then used to guide a watershed
segmentation of the grid map to identify complete rooms.
The details of each stage are described below.

A. People Tracking and Marker Placement

Our people tracking scheme is illustrated in Figure 3.
First, the laser scan is segmented at jumps in adjacent
range samples greater than a fixed threshold (depth dis-
continuities). Segments are labelled as leg candidates if
the distance between end-points falls within the range of
expected leg diameters, and four such candidates are shown
in Figure 3 (small circles). Finally, pairs of leg candidates
are labelled as possible people when the distance between
candidates conforms to the expected leg separation, and
the position of the person is calculated as the centroid
of range samples. Tracking is initialized by selecting the
person closest to the robot, and the candidate nearest the
previous position is tracked for each new scan. Tracking
is reinitialized if the motion between scans exceeds a
threshold, no people candidates are found, or the user
provides a verbal reset command.

During interactive map building, the robot is driven
towards the tracked person with a new set-point generated
every second, and the user describes the each location
using verbal phrases such as“Robot, we are in the office”.
With each new phrase, the robot creates a marker storing
the identity of the room, the range and bearing to the
tracked person in the robot frame, and a timestamp. For
effective room segmentation, markers need only be placed
near both sides of a boundary between rooms (such as
a door). When all rooms have been visited, the user
issues the verbal command“Robot, mapping complete”
to indicate that a grid map and registered path should now
be generated. Room markers are transformed to the grid
map by searching for the nearest (in time) robot location
in the registered path, and adding the stored relative range
and bearing of the marker.

Fig. 4. Watershed-based room segmentation: distance transform (top),
watershed (middle) and marker-guided merging (bottom, room markers
indicated with unique symbols).

B. Marker-Guided Room Segmentation

Segmentation of the gridmap into labelled rooms is
based on the conventional watershed algorithm for binary
images [16], modified to guide the merging stage with
room markers. The segmentation process is illustrated in
Figure 4. Taking the occupied cells of the grid as goal
points, a distance transform is applied to free cells and the
result is smoothed to reduce artifacts of the rectilinear grid
(Figure 4, top). To calculate the watershed segmentation,
the distance transform is traced uphill from each free cell
to the first local maxima, typically near the centre of the
room. All free cells leading to the same local maxima (or
connected group of local maxima) are labelled as belonging
to the same segment. A typical watershed segmentation
result is shown in Figure 4 (middle).

The watershed algorithm typically over-segments a non-
convex map, and subsequent merging is guided by the
interactively placed markers (shown with unique symbols
for each room in Figure 4). In this process, each segment
containing a marker is first labelled as belonging to the
associated room, and the remaining unlabelled segments
are then iteratively merged with neighbouring labelled seg-
ments. At each iteration, the pair of segments that minimize
the distance between the centroid of the unlabelled region
and the closest marker in the labelled region are merged.
The typical result of the final room segmentation is shown
in Figure 4 (bottom). Assuming the rooms are roughly
convex and without holes, the centroid of each room is
calculated as a goal for future path planning.



V. EXPERIMENTAL RESULTS

To demonstrate the validity of the interactive SLAM
framework proposed in this paper, SLAMbot was given
the task of mapping and navigating between rooms along
a 70 metre corridor in the vicinity of our lab. The mapping
phase commenced with the tour guide issuing the vocal
command“Robot, follow me” via a wired headset. The
robot then followed the guide around the building, and
vocal descriptions such as“Robot, we are in the office”
were provided as each new area was visited. Six distinct
labels were used to describe the regions in the map (see
Figure 8):lab, corridor, office, stairwell, kitchenandfoyer.

To ensure the generation of an accurate SLAM map, the
corridor was traversed multiple times, visiting each location
at least twice. It should be noted that the robot did not
actually enter the office or stairwell due to the wheelbase
being wider than the door frames, but these locations could
nevertheless be mapped from the door. After completing
two rounds of the map, the robot was issued with the vocal
command“Robot, mapping complete”which caused the
SLAM map to be finalized and triggered the path correc-
tion, occupancy map generation and room segmentation
algorithms to be applied to the logged data.

The point landmarks in the final SLAM map are shown
in Figure 5. Figure 6 plots the stored laser scans (used
for occupancy grid generation) overlaid on the uncorrected
robot path generated by SLAM. The necessity of path
correction is clearly demonstrated by this result. It can be
seen that the ends of the corridor appear twice in the map
(once for each visit to these locations), which would lead to
an inaccurate and unusable occupancy grid. Figure 7 shows
the laser scans overlaid on the corrected robot path obtained
by applying the scan matching scheme described in Section
III-A, which demonstrates a significant improvement over
Figure 6. Any remaining mis-alignment of scans is most
likely caused by poor time registration of odometry and
laser scans (a 100 ms time registration error at the robot’s
maximum angular velocity of 40◦/s results in a 4◦ error).
Finally, the occupancy grid generated using the process in
Section III-B is shown in Figure 8, with unoccupied space
segmented into the six areas described above. The markers
used to guide the segmentation are indicated on the map
with unique symbol for each area.

Following map generation, the robot automatically en-
tered navigation mode, and was issued with a voice com-
mand“Robot, go to the office”. The global path generated
using the path transform between the initial position in
the lab and the target location at the centre of the office is
shown in Figure 8, and the task was successfully completed
(with the robot stopping at the door of the office).

VI. SUMMARY AND FUTURE WORK

We have presented an interactive framework that enables
a robot to generate a segmented metric map of an environ-
ment by following a tour guide and storing virtual location
markers created through verbal commands. Throughout the
mapping process, the robot performs Kalman filter based

SLAM using a novel fusion of advanced sonar and laser
measurements. Two maps are generated at the completion
of the mapping process: a SLAM map consisting of point
features used for localization, and an occupancy grid for
task planning. Generation of an accurate occupancy grid
is central to our framework, and has been addressed with
the development of a novel technique for laser scan reg-
istration. During mapping, the location of the robot and
an associated laser scan are periodically recorded, along
with several local features in the current SLAM map. The
path of the robot can then be later recovered by matching
the stored local features to points in the final SLAM map
using a modification of the laser scan matching algorithm.
An accurate occupancy grid is recovered by overlaying the
laser scans on the robot path corrected with respect to the
SLAM map. Experimental results have demonstrated the
necessity of path correction, and verify that our approach
generates accurate occupancy grids.

This paper has also introduced a novel method for
interactive segmentation of the occupancy grid into rooms,
corridors and other regions. The algorithm is based on a
watershed segmentation with an additional merging stage
guided by the verbally generated location markers. This
approach was successfully demonstrated to segment the
map of a large office building into six labelled regions. The
segmented map was used to plan a path between rooms, but
knowledge of the extent of free space in each room could
also be utilized for more sophisticated tasks such as floor
cleaning or searching for an object in a particular room.

The main limitation of our implementation is the com-
putational complexity ofO(n2) for the covariance update,
which limits the number of landmarks that can be handled
by SLAM in real-time (this problem is not encountered in
the topological mapping approach used in [1]). However,
we have successfully demonstrated real-time SLAM with
up to 300 landmarks, which is sufficient for medium
sized maps. Furthermore, this constraint is lessened by the
continuing increase in available computing power.

In future work, we intend to extend the system by imple-
menting a global localization strategy to determine the pose
of the robot anywhere in the SLAM map. Furthermore,
visual sensing could lead to a number of improvements by
providing additional features for both SLAM and person
following. Face detection could allow the robot to direct
a microphone towards the user and thus do away with the
current requirement of a wired headset. Finally, a smaller
robot is currently in development that will have the ability
to access a greater number of rooms around our lab.
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