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Abstract— Increasing the information content of measure-
ments can ease some of the problems associated with simul-
taneous localization and mapping (SLAM). We present an
approach for combining measurements from a laser range
finder with measurements from an advanced sonar array
capable of accurate range and bearing measurements and
edge, corner and plane classification. In our approach sonar
aids laser segmentation, laser aids good sonar point feature
selection and laser and sonar measurements of the same
object are fused. We also present a novel approach for fitting
right angle corners to laser range data, which enables simple
error estimation through the minimization of sum of square
range residuals. The results are then used for SLAM with a
mobile robot.

I. INTRODUCTION

Mobile robots that build their own maps whilst using
them for localization represent an important step towards
creating useful autonomous mobile robots. There has been
a large variety of sensors used while performing simultane-
ous localization and mapping (SLAM): sonar (measuring
only range) [9], advanced sonar measuring range and
bearing to planes corners and edges [4][17], laser range
finders [12], monocular vision [19] and stereo vision [5].
Often a combination of sensors is used to improve perfor-
mance such as vision with laser [3].

There are several reasons for sensor fusion. When
different sensors are measuring the same percept, false
negatives can be rejected and measurement precision can
be improved. In case of complementary sensing, each
sensor measures a different percept which complement
each other. For example in [1] vertical lines from a camera
are used together with horizontal line segments from a
laser range finder for localization. It was found that on
long corridors which have few horizontal line features that
aid localization along the corridor, the use of vertical lines
improved localization performance dramatically.

In general, the motivation behind fusion of laser and
sonar lies in their complementary character. The main
drawbacks of simple sonar systems are specularity, wide
beam width and crosstalk [13]. Smooth walls act like
mirrors [15], making only walls with ≈ 90◦ angle to
the acoustic beam detectable. Objects having good sound
insulating properties might not appear in the measurements
at all. Planar laser scanners on the other hand, can miss ob-
stacles which are not in their sensing plane. The detection
of mirrors and glass doors can be a problem as well.

Fusion of laser and sonar has been done for different
purposes. In [13] sonar and laser readings were combined
into a sector map for obstacle avoidance. Point features
extracted from sonar readings which were recorded at
different positions are used for localization in [12] together
with line segments and door features from a laser range
finder. Fusion of sonar and laser measurements took place
in a Kalman filter when updating the estimated robot
location with the measurements of landmarks.

When mapping, laser measurements can be used to
filter out spurious sonar measurements [13][21][7] or vice
versa [15]. Then measurements can be stored in an occu-
pancy map [21][8], or features such as lines and corners
can be extracted and combined as in [7]. Alternatively,
belief in the existence of line features stemming from laser
measurements can be reinforced using sonar measurements
as in [15]. Line features can also be extracted from an oc-
cupancy map generated using both sensing modalities [13].
Not all of these referenced papers use simple sonar sensors
capable of measuring range only. In [21] a special “tri-
aural” sensor was used, which could measure range and
bearing to corners, planes and edges. However much of
this extra information was wasted by representing the
measurements with an occupancy grid.

Features used in SLAM range from raw laser scan
points [20] to point features representing trees [18]. Line
segments and corners are often used as features. Their
extraction from laser scans can be simple, and they provide
robust protection against the accidental inclusion of arte-
facts from moving objects such as humans. Corner features,
if their orientation is known, have the advantage that their
re-observation can completely determine a robots pose.
Fitting a corner to points representing a right angle corner
can be done by minimizing the square sum of perpendicular
distances of points from two orthogonal lines as in [11],
essentially by solving a constrained least squares problem.
However when results are to be used in a Kalman filter,
an accurate error model of the corner estimate is also
necessary.

The term advanced sonar [16] used in this paper refers
to sonar that measures range and bearing accurately -
typically to 0.2 mm and 0.1 degrees at 3 metres range when
the speed of sound is calibrated. The advanced sonar is also
capable of classifying targets into right angled concave
corners, planes and point/edge features - all in a single
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Fig. 1. SLAMbot, the testbed for our mapping experiments.

measurement cycle. By using a transmitted double pulse
sequence that is easily identified, interference from other
sonar sensor is rejected.

This paper presents new results of simultaneous lo-
calization and mapping using advanced sonar and laser
range measurements. The advanced sonar aids laser line
segmentation by detecting small edge and corner features
not seen by the laser due to the larger range quantization
and error of the laser. For example doors that are not
flush with a corridor are often merged with the corridor
line segment with laser alone, however doorjambs are
easily detectable to the advanced sonar as edges and small
corner features, thus providing a cue for line segmentation
in laser measurements. Planes and corners measured by
laser and sonar are fused, achieving greater robustness and
accuracy. Typically the advanced sonar range and bearing
measurements are more accurate within a 5 metre range,
whilst laser provides measurements along a line segment
rather than just at the normal point as is the case for sonar.
The paper also presents a novel approach to fitting right
angle corners to range data in polar coordinates that enables
simple error estimation essential for a Kalman filter fusion
process.

II. HARDWARE DESCRIPTION AND LOW LEVEL
PROCESSING

The testbed for our experiments is a differential drive
robot called SLAMbot (see fig. 1). It is equipped with
odometry, 2 advanced sonar arrays on panning mecha-
nisms, and a Sick PLS laser range finder.

A. Odometry

Mounted on each of SLAMbots driving wheels are
optical encoders with a resolutions of 2000 steps per
revolution that are sampled every 10 ms. The following
equations describe the state of odometry x = [x y θ]T :

xk+1 = xk −
Lr + Ll

2
sin(θk +

Lr − Ll

2D
) (1)

yk+1 = yk +
Lr + Ll

2
cos(θk +

Lr − Ll

2D
) (2)

θk+1 = θk +
Lr − Ll

D
(3)

where Lr, Ll are distances traveled by the right and
left wheel and D denotes the wheelbase. In our error
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Fig. 2. Meaning of corner parameters.

model as in [16], we have assumed, that the sources of
odometry errors are random white nose added to the wheel
separation and to distances traveled by the wheels. We
have propagated the odometry covariance matrix Pk in the
conventional way:

Pk+1 =
∂xk+1

∂xk

Pk

(

∂xk+1

∂xk

)

T

+
∂xk+1

∂uk+1
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(

∂xk+1

∂uk+1

)

T

(4)

where uk+1 = [Lr Ll D]T , and

Qk+1 =





K2
RL2

r 0 0
0 K2

LL2
l 0

0 0 K2
DD2



 (5)

KR, KL, KD are model parameters chosen empirically.

B. Advanced Sonar Array

The advanced sonar sensors mounted on the robot are
capable of measuring the range and bearing of planes,
right angle corners and edges with σbearing ≈ 0.1◦ and
σrange ≈ 0.2 mm [16]. They are mounted on panning
mechanisms which are swept back and forth continuously.
The sonar sensors classify reflectors into planes, corners
and edges. Small right angled reflectors formed from 1 cm
moldings on the walls of the corridors are classified as edge
reflectors.

The error model adopted for the sonar sensors is derived
simply from random white Gaussian noise added to bearing
measurements and to the speed of sound. The standard
deviations of these errors are taken as 2◦ for bearing and
2% of the speed of sound and were chosen to account
for changes in air temperature, air turbulence, unmodelled
robot vibrations and association errors.

C. Sick PLS Laser Range Finder

The Sick PLS is a time-of-flight laser range finder that
scans in a horizontal plane with 0.5◦ resolution in the
bearings and 5 cm resolution in the range. In [6] a detailed
range error model can be found that was applied to line
segment systematic and random error modeling. A novel
approach to line fitting in polar coordinates is also pre-
sented there which minimizes range residuals. These results
are used in this work for line fitting and error modeling. A
simple treatment of systematic error estimates is to increase
the estimated line covariance matrices by adding squared
systematic errors to diagonal elements of the covariance
matrices. This error estimate becomes optimistic when the
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Fig. 3. Corner estimation depicted in Cartesian coordinates.

same feature is observed repeatedly, since the systematic
errors are of course correlated, rather than independent as
implicitly assumed by the error model.

For fusion of right angle corners, a corner fitting method
is necessary. In [11] a method for fitting orthogonal lines
is described, where the association of points to lines is
assumed to be known. A singular value decomposition
is applied to minimize the sum of square distances of
the points from the fitted straight line. Since the laser
scanner operates fundamentally in polar coordinates by
measuring ranges to objects at discrete bearings, the er-
rors in Cartesian coordinates are correlated. Moreover, the
covariance matrix of each point is different, which makes
an accurate error estimation for the method described
in [11] complicated. To make the error estimation simpler
and more accurately model the fundamental range error
mechanism, we have developed a corner fitting approach
which minimizes the square sum of range residuals.

As can be seen from fig. 2 we describe a right angle
corner with the range rc and bearing φc of its centre and
the angle γ of its bisecting line with the X axis. Then the
angles of the normals of the lines constituting the corner
are γ+ π

4
and γ− π

4
. The lines themselves can be described

with the equation of a line in polar coordinates:

d = r cos(γ ±
π

4
− φ) (6)

where φ is the bearing of range reading r and d is the
distance of the line from the origin. Since both lines go
through (φc, rc), (6) can be written as:

d = rc cos(γ + sign(φi − φc)
π

4
− φc) (7)

where to distinguish between the lines, we have used the
fact that the measured laser bearings φi belonging to the
first line are smaller than φc, and bearings belonging to the
second line are bigger than φc. Then measured ranges can
be modeled as:

ri =
d

cos(γ + sign(φi − φc)
π
4
− φi)

=

=
rc cos(γ + sign(φi − φc)

π
4
− φc)

cos(γ + sign(φi − φc)
π
4
− φi)

(8)

Using linear regression iteratively on the linearized ver-
sion of (8):

ri − r0i ≈
∂ri

∂φc

∆φc +
∂ri

∂rc

∆rc +
∂ri

∂γ
∆γ (9)

where

∂ri

∂φc

=
rc0 sin(γ0 + sign(φi − φc0)

π
4
− φc0)

cos(γ0 + sign(φi − φc0)
π
4
− φi)

(10)

∂ri

∂rc

= 1 (11)

∂ri

∂γ
=

rc0 sin(φc0 − φi)

cos2(γ0 + sign(φi − φc0) − φi)
, (12)

can provide an estimate on the corner parameters. Equa-
tion 9 can be restated in vector form as

∆r = rm − r0 = H0∆b + R (13)

Where

H0 =





. . . . . . . . .
∂ri
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∂rc
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. . . . . . . . .



 (14)

∆b = [∆φc ∆rc ∆γ]T (15)

R is a vector of measurement noise with a covariance
matrix σ2

rI and rm is a vector containing measured ranges.
Using linear regression [22] iteratively on the linearized

problem (9), we can find (φc, rc, γ) which minimizes the
square sum of range residuals, the following way:

rj = [rj1 . . . rji . . . rjn]
T

=

=

[

. . .
rcj cos(γj + sign(φi − φcj)

π
4
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Equation 17 yields the least squares estimate, and can be
found for example in [14]. The advantage of the above
mentioned approach is that the corner point is implicitly
chosen, and a simple covariance estimate is obtained due
to the use of linear regression [22]:

cov(∆b) = cov([φc rc γ]T ) = σ2
r(HTH)−1 (19)

As shown in [6], the Sick PLS output is influenced by
systematic errors. To gain a worst case systematic error
estimate, similarly to [6], contributions from each range er-
ror source are calculated using (17) by replacing (rm − rj)
with the estimated range systematic errors. The absolute
values to systematic errors are then summed up, and their
square is added to the diagonal elements of the random
error covariance matrix.

The disadvantage of this corner fitting approach is the
slight possibility of divergence when the initial choice of



parameters has a large error. To improve robustness, in each
iterations we remove those rji from rj which are either
negative or they are larger than twice of the measured range
rmi.

An example of the corner fitting algorithm is shown in
fig. 3 where the convergence from a deliberately poor initial
corner estimate is shown. In practice at most 10 iterations
are necessary. The computational load is small compared
to SLAM in section IV.

Time registration problem

In our experiments we found that there is a significant
and varying delay between the time the scan physically
commenced and reception of the first bytes of the results.
This delay can cause a large error when the robot moves
quickly. To account for this we estimate errors for corners
and lines using the speed of the robot and a time regis-
tration error. The squares of these errors are then added
to the diagonals of the corresponding measurement error
covariance matrices in the Kalman filter implementation.

III. SONAR AND LASER SYNERGY

The benefits of combining sonar and laser measurements
are as follows:

• Increase in the accuracy of measurements. The greater
the number of measurements fused, usually the more
accurate are the results.

• Enhancement in measurement reliability. If the same
feature is observed by two sensing modalities, the
existence of that feature is more likely.

• More robust laser segmentation. Due to the limited
range and bearing resolution of the laser, measure-
ments from different features can be erroneously
segmented into one line segment. However by using
sonar observations, the correctness of segmentation
can be improved. This can avoid some systematic
measurement errors due to incorrect laser associations.

• Removal of specular reflections. Using information
from laser scans, phantom multiple reflection sonar
measurements can be removed more easily compared
to using sonar alone.

We have chosen the following scheme for sonar and
laser synergy: sonar aids laser segmentation; laser helps to
remove spurious sonar measurements and to select good
sonar point features. Laser and sonar features of the same
object are fused and statistics are kept for each feature as
to their sensor type contribution.

While combining laser and sonar measurements, we
have assumed that sonar and laser are observing the same
features, the speed of sound used in the calculations is
reasonably accurate and the robot short term odometry is
reasonably accurate.

A. Segmentation

For each laser scan, sonar readings 6 second before and
6 seconds after a laser scan are transformed into the laser
coordinate frame using odometry information. This time
window is chosen to include one full swipe of each sonar

sonar plane

laser point
sonar corner

sonar edge

WALL
DOOR

WALL

Fig. 4. Laser scan segmentation aided by sonar. Note the sonar
measurements are offset from the wall for clarity only.

and therefore provide sonar coverage for the whole laser
scan.

In the next step sonar readings are clustered. Clusters
distant from laser readings are tagged as invisible and are
not processed further with this scan.

In the laser segmentation step, each point not already
part of a line forms the start of new line segment. The
segment grows until any of the following conditions is
satisfied:

• There is a discontinuity in the scan.
• The standard deviation of point distances from the line

exceeds a set threshold.
• The distance of the next 3 points from the line exceeds

a threshold derived from a range error model.
• The range of a point is further than a threshold. This

is to stop fitting lines to measurements which are too
far from the robot.

• The end of the 180◦ scan is reached.
• There is a cluster of sonar readings containing corners

or edges in the vicinity.
A completed line segment containing more then a set
number of points is accepted as a valid line segment and
the conditions under which it was completed are stored.
The start condition of the next line inherits the terminating
condition of the previous line candidate. Line segment end
conditions play an important role in our implementation of
SLAM.

Sonar clusters containing corners and edges that termi-
nate line segments are good candidates for point features.
They are especially good if they are grouped close together,
and if they are close to the line. Sonar readings closest to
the centers of a such clusters are selected as good point
features. Such point features ease association, and reduce
the number of features in the map by discarding isolated
targets such as chair legs.

In the next phase, extracted laser lines that are separated
by a sonar corner are checked if they constitute a right
angle corner. If so, a corner is fitted to the raw data
points with the approach described in subsection II-C. The
number of sonar corners are then stored with the laser
corner and vice versa.

Statistics from sonar measurements before clustering are
kept on each laser line segment and laser corner to allow
confirmation of the existence of features after each 12
second window. At the end of the scan processing, all laser
lines, corners and their uncertainties are transformed into



the robots reference frame.
An example for sonar laser segmentation is depicted in

fig. 4, where there is a wall, a door and table leg shown
as a square. The line growing starts on the righthand side
and stops at the right door frame due to sonar edge and
corner returns. This line is rejected since it consists of
too few line points. A new line is grown between the
right and left door frames and is accepted since it contains
enough points. The next valid line is grown from the left
frame until the table leg where there is a sonar edge and
a range discontinuity. Other segmenting methods such as
Split and Merge [2] or RANSAC [10] would probably have
segmented each scan point except those associated with
the table leg as one segment. Our segmentation approach
is conservative since it assumes that each line segment
belongs to a different object. This assumption reduces the
chance of systematic measurement errors in SLAM due
to incorrect segmentation. For example let’s assume in the
map there is a line feature entailing both parts of walls and
the door. If an observation contains only part of the door
and part of the wall due to obstruction, then there will be
a systematic error component in the innovation error.

This segmenting approach can result in a large number
of map features, however we do allow line merging as
described in the next section and the table leg in fig. 4 will
not have a lasting effect on the map.

B. Fusion

A laser line segment or corner having a corresponding
sonar line or corner get fused if the sonar readings time
stamp is closest to that particular laser scans time stamp.
Fusion is done in a Kalman filter fashion, where each
measurement is weighted by its uncertainty:

zf = Axl + Bxs (20)

where zf is the fused measurement, xl, Cl is the laser
measurement and covariance matrix, xs, Cs is the sonar
measurement and covariance matrix and

A =
C
−1

l

C
−1

l
+ C

−1

s

, B =
C−1

s

C
−1

l
+ C

−1

s

. (21)

The estimated covariance matrix of the fused feature xf

is calculated as:

Cf = AClA
T + BCsB

T (22)

In the case of corners, all computations are done only
for the range and bearing, since sonar cannot measure
orientation of corners.

IV. SLAM

The SLAM algorithm is implemented in Matlab using a
simple extended Kalman filter version similar to that in [5].
For simplicity speed of sound and odometry parameters are
not included into the filter and only line segments, corners
and point features are used.

In the current implementation all line segment features
used either originate from the laser only or are the result of
laser and sonar line fusion. This will be extended later to

include sonar only features resulting from glass objects for
example. In the state vector, line segments are represented
by an angle and the distance of the closest point to the
origin. Line segment endpoints are stored separately in
Cartesian coordinates, and their position is updated at
each state update. The line segment endpoints are also
changed upon re-observation. The observations endpoints
are projected onto the corresponding line feature from the
map. Then the line feature end points are:

• moved towards the observation endpoints in a big step
if it is likely that the line ends there, e.g. the line is
terminated with sonar edges or corners.

• moved towards the observation endpoints in a small
step if the observation’s endpoint is unreliable, for
example due to termination of the line with poor
fitting laser points and no sonar information.

• unchanged if measurement endpoint carries no in-
formation. For example if measurement endpoint is
inside the map line segment, but was terminated
because line went beyond the lasers 180◦ field of view.

Only line segments longer than 70 cm are used in the
results.

Corners are represented in the state as an orientation and
Cartesian global coordinates. The endpoints of the corners
are stored separately to ease association.

Point features, i.e. clusters of sonar edge/corner measure-
ments represented with a measurement in the middle of the
cluster, are stored in the state as Cartesian coordinates.

Association is implemented in a simple way using a
validation gate. For line segments, the length of overlap
is also checked. If there are two possible map feature
candidates for a line segment measurement, with the mea-
surement covering at least 40 cm of both candidates, then
line segment features are merged.

V. EXPERIMENTAL RESULTS

To test SLAM with advanced sonar and laser, SLAMbot
was driven around our lab with a joystick, then out into the
corridor. The robot was then driven from one end of the
corridor to the other and back to the lab. Odometry, sonar
and laser measurements were logged during the more than
150 meters travelled by the robot. During the experiment,
half a dozen people walked past the robot, however no
changes to the environment occurred such as closing a door.

All calculations were done off-line in Matlab. The re-
sulting 240 feature map is shown in fig 5. Dots on the
figure represent corners and points. The robot managed to
keep track of its position throughout the whole experiment.
However the created map is not error free. At around
(15,6), due to a violation of the flat-floor assumption a line
was included in the map across the corridor. The corridor
is sloped at one place which caused the laser beams to
reflect back from the floor.

For comparison we tried to run SLAM with features
from the laser only, but the robot accumulated a large
enough error in the direction of the corridor to get lost.
Even though there are features on the corridor allowing
localization in the direction of the corridor, these features
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Fig. 5. Slam results on a corridor.

were observed only when the robot was moving in one
particular direction due to the 180◦ field of view of the
laser. Therefore the sonar fusion with laser has prevented
the divergence of SLAM.

We also ran SLAM using only point landmarks from
sonar and the robot kept track of its position.

VI. CONCLUSION AND FUTURE WORK

This paper presents our work on performing SLAM
using advanced sonar with a laser range finder. This paper
also demonstrated successful fusion of lines and corners
measured with sonar and laser. The synergistic properties
of sonar and laser measurements have been exploited
in this work to aid laser line and corner segmentation
with advanced sonar readings. Laser measurements, on
the other hand can simplify and improve the selection of
reliable sonar point features and assist in removing multiple
reflection sonar phantom features.

We have also presented a novel right angle corner fitting
approach for laser measurements which enables simple
error covariance estimation through the minimization of
sum of square range residuals.

Future work will compare our maps with a ground truth
map generated using a precise laser tracking instrument.
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