
Real Time Object Tracking using Reflectional
Symmetry and Motion

Wai Ho Li and Lindsay Kleeman
Intelligent Robotics Research Centre

Department of Electrical and Computer Systems Engineering

Monash University, Clayton, Victoria 3800, Australia

{ Wai.Li, Lindsay.Kleeman } @eng.monash.edu.au

Abstract— Many objects found in domestic environments are
reflectionally symmetric. In this paper, we present a system
that can visually track moving objects by their reflectional
symmetry in real time. Apart from the assumption of symmetry,
the tracking system does not require any prior object models
of the target, such as its colour and shape. The system is
robust to shadows and specular reflections. It can also deal with
transparent objects. Block motion detection is used in conjunction
with symmetry for object tracking. A Kalman filter is used to
estimate the object state. Predictions from the Kalman filter
is used to improve the efficiency of the symmetry detector.
The tracker provides a real time segmentation of an object by
searching for motion that is symmetric about the object’s mirror
line. The tracking system also generates a rotated bounding box,
aligned with the object’s symmetry line, which can be used as a
window for other image processing operations. The final system
can track single objects in 640x480 videos at over 40 frames per
second using a standard notebook PC.

For videos of tracking results, please visit:
www.ecse.monash.edu.au/centres/irrc/li_iro2006.php

I. INTRODUCTION

Visual tracking systems employed in robotics generally re-

quire a priori models. These object models range in complex-

ity from colour histograms to three dimensional mesh grids

consisting of thousands of polygons. This prior knowledge

allows for robust tracking, especially when several models are

used in a synergetic manner. However, object models usually

require significant human effort in their construction, which

may include the collection of large, hand-labelled, training

data sets, or removing an object from its environment for 3D

scanning. For example, Boosting algorithms [1] can provide

robust real time tracking, but require a large set of positive and

negative training images, as well as significant offline training

time. Systems that make use of multiple feature modalities,

such as [2], can also perform robustly under real time require-

ments but again, require significant prior knowledge.

Constructing prior models for every object that can appear in

a robot’s environment is neither practical nor cost effective in

many cases. In many environments, unmodelled objects may

appear without warning. For example, a domestic robot can

expect to encounter new toys and kitchen utensils during its

cleaning operations. For increased adaptability, a robot should

possess some means of tracking novel objects, in real time,

without an a priori model. This will allow the robot to obtain

information about its surroundings more autonomously. Ide-

ally, the robot can obtain enough information during tracking

to construct simple models for most new objects. This will

shift the work of the user from building complete models,

to the augmentation of models built by the robot. The lat-

ter should require less human effort. Segmentation of the

tracked object is another valuable tool for model building. For

example, colour models can be built by looking for colour

consistency in the segmented object across multiple video

frames.

To robustly track an object without its prior model, fea-

tures that are robust to affine transformation and illumination

changes are needed. Descriptive and robust feature detection

schemes, such as SIFT [3], cannot be applied to real time

tracking because of their computational cost. In order to

perform tracking in real time, model-free methods usually

make use of features that are computationally inexpensive to

extract and match. Huang et al [4] used region templates of

similar intensity. Satoh et al [5] utilized colour histograms.

Both approaches can tolerate occlusions, but are unable to

handle shadows and colour changes caused by variations in

lighting. To track objects under different illumination condi-

tions require features that do not directly rely on colour or

intensity information.

Gestalt suggested that symmetry is one of several salient

features humans use to visually identify objects. Indeed,

many man-made objects are reflectionally symmetric. Apart

from aesthetics, many objects are intentionally designed to be

reflectionally symmetric for practical reasons. For example,

headphones are symmetric so that sound can be delivered to

both ears. Most drinking utensils, such as bottles and cups, are

cylindrical to allow for easy manipulation, which makes them

reflectionally symmetric when viewed from the side. As such,

reflectional symmetry appears to be a valid salient feature for

model-free tracking.

The detection of symmetry in digital images has been an

area of heavy research. The Generalized Symmetry Trans-

form [6] can detect bilateral and radial symmetry at different

scales. Yip’s [7] symmetry detector can detect skew symmetry,

but at high computational cost. Ogawa suggested a Hough

transform method to find symmetry in edge segments [8].

Other approaches include the use of ribbons [9] and modified

versions of the Generalized Symmetry Transform. While radial

1-4244-0259-X/06/$20.00 ©2006 IEEE

symmetry has been used in real time applications [10], re-

flectional symmetry detectors, due to their high computational

costs, are generally used in offline applications.
The research presented in this paper uses reflectional sym-

metry as a feature for the real time tracking of moving objects.

The use of symmetry and motion as a segmentation tool is also

examined. Apart from the assumption of reflectional symme-

try, no prior object models are used. Note that the object being

tracked does not have to be completely symmetric. Partially
symmetric objects, such as a coffee mug with a handle, can

also be tracked. The tracker, as it only relies on symmetry, can

track multi-colour objects as well as transparent objects. The

system can also tolerate occlusions and illumination changes.

Fig. 1. System Diagram of Object Tracker

The system diagram in Figure 1 gives an overview of the

tracking process. Motion detection results are used to limit

symmetry detection to areas with movement. The Kalman

filter prediction, before the measurement update, is used to

speed up symmetry detection by limiting the detection angle.

The detection results are then passed to the Kalman filter as

measurement. Using the symmetry line estimate produced by

the Kalman filter, the motion detection results are refined.

This produces a near-symmetric segmentation of the object.

A rotated bounding box is then computed based on the

segmentation.
This paper is partitioned in the following manner. Our

implementation of the Fast Symmetry detection algorithm is

covered in brief by Section II. The block motion masking

algorithm, and the refinement of the motion mask using

symmetry, is discussed in Section III. Section IV covers the

Kalman filter configuration and data association. A technique

to automatically initialize the Kalman filter is also discussed.

Tracking results are shown in Section V. Video frames of

tracking result sequences can be found at the end of paper.

II. FAST REFLECTIONAL SYMMETRY DETECTION

An improved implementation of the Fast Symmetry
detection algorithm [11] provides the tracker with symmetry

line measurements. This symmetry detection algorithm has

also been used to perform static object segmentation. Details

concerning the implementation and its computational complex-

ity can be found in the segmentation paper [12]. A brief

summary of the detection method is provided below.

A. Algorithm Description

Symmetry detection is performed using the edge pixels of

an image. By doing this, detection indirectly benefits from

the noise rejection, edge linking and weak edge retention

properties of edge filters. The Canny edge detector is used for

edge detection, with the same aperture and threshold values

employed across all experiments.

Standard Hough parameterization is used for the symmetry

lines. Edge pixels are grouped into pairs and each pair votes for

a single symmetry line in parameter space. Unlike traditional

Hough Transform [13], which requires multiple votes per edge

pixel, our approach only requires a single vote per edge pixel

pair. This convergent voting scheme is similar to the approach

used in Randomized Hough Transform [14].

Fig. 2. Fast Symmetry Detection. Edge pixels (•) are rotated by θ about
the image center. Then, the rotated pixels are inserted into a 2D array, Rot.
Edge pixels from the same scanline are placed into the same row. Edge pixels
in the same row are paired up and votes for symmetry lines in R, θ Hough
space. The [3,1] rows will vote for the dashed symmetry line (R = 2)

For each Hough angle bin θindex, the edge pixels are rotated

about the center of the image by a corresponding angle θ. The

rotated edge pixels are then quantized into a 2D array Rot.
Edge pixels are placed into rows based on their scanline after

rotation, as shown in Figure 2. Notice that any pair of rotated

pixels from the same scanline can only vote for vertical lines

of symmetry. This corresponds to the dashed symmetry line

with angle θ prior to the rotation operation. The algorithm

only allows edge pixels on the same scanline (same row in

Rot) to pair up during Hough voting. This guarantees that all

votes will be made for the same angle, shown as θ in Figure 2.

The line radius R can be found by taking the average of the

x coordinates of an edge pixel pair. After voting, symmetry

line are found by looking for peaks in the Hough accumulator.

A non-maxima suppression algorithm [15] was used for peak

finding. The Kalman filter is provided with (R, θ) parameters

of the symmetry lines with the highest number of votes.

B. Improving Symmetry Detection for use in Object Tracking

The raw Hough transform results cannot be used directly

as measurements for tracking. Inter-object symmetry as well

as symmetric portions of the background, like table corners,

can overshadow the symmetry of the object being tracked.

Figure 3(a) is an example where background symmetry lines

may cause problems in tracking. The bottle’s symmetry line is

weaker, in terms of its Hough vote total, than the orange sym-

metry line (line 1). As such, non-object symmetry should be

rejected before symmetry detection, to improve the robustness

of tracking. This is achieved by only allowing edges in the

moving portions of an image to cast votes. A motion mask,

generated using the algorithm detailed in Section III, is used to

suppress background edge pixels. By doing this, the majority

of votes will be cast by edge pixel pairs belonging to the

moving object.

(a) Top three symmetry lines (b) Angle limits

Fig. 3. Symmetry Detection for use in Object Tracking.
Left: Top three symmetry lines returned by our detector. Lines are numbered
according to the quantity of votes they received, with line 1 having received
the most votes. Notice that the object’s symmetry line is not the strongest one
in the image.
Right: Angle limits (black) imposed on symmetry detection. The angle limits
are generated using the Kalman filter prediction and the prediction covariance

The state prediction of the Kalman filter is used to improved

the computational efficiency of symmetry detection. Recall

that the symmetry detector iteratively rotates the edge pixels

to find symmetry lines at different angles. Using the Kalman

filter θ prediction and the prediction covariance, the range of

rotation angles can be limited. Figure 3(b) is an example of

such angle limits provided by the Kalman filter. By limiting the

Hough voting angle, the total number of votes cast is reduced.

This provides a large improvement to the execution time of

the symmetry detection algorithm. In our experiments, three

standard deviations either side of the symmetry line was used

as angle limits.

III. BLOCK MOTION DETECTION

As seen in Figure 3(a), the amount of background sym-

metry needs to be reduced before applying the symmetry

detector. In order to do this, a binary motion mask is used

to eliminate static portions of video frames. Background

modelling approaches are inappropriate for our application due

to their assumption of a near-static background and consistent

illumination conditions. Also, background modelling is not

suitable for the detection and tracking of transparent and re-

flective objects. Instead, a fast block-based frame differencing

approach is employed to generate the motion masks. The

classic two-frame difference, first suggested by Nagel [16],

is used.

A. Algorithm Description

The colour video frames are first converted to grayscale

images. The absolute difference between time-adjacent images

is calculated. The resulting difference image is then converted

into a block image by spatially grouping pixels into 8x8 blocks.

The choice of block size is arbitrary, and should be determined

based on the smallest scale of motion to be considered by the

tracker. The sum of pixel values in the difference image is

calculated for each 8x8 block. Each block’s sum is compared

against the average value across all blocks. Blocks with a sum

higher than a threshold value are classified as moving parts of

a video frame. The average block sum multiplied by a constant

factor is used as the motion threshold. The constant factor was

determined experimentally, by starting at a value of 1, and

increasing it until camera noise and small movements were

successfully ignored. In all our experiments, a factor of 1.5

was used.

Algorithm 1: Block Motion Detection

Input: I0, I1 – Video frames at time t, t + 1
Output: mask – Motion Mask

Parameters: mf –Motion threshold

diff ← |I1 − I0|
res, sum are images 1

blocksize the size of diff
sum[][] ← 0
i ← 0
for ii ← 0 to height of res do

m ← i
i ← i + blocksize
for increment m until m == i do

j ← 0
for jj ← 0 to width of res do

n ← j
j ← j + blocksize
for increment n until n == j do

sum[ii][jj] ← sum[ii][jj] + diff [m][n]

res ← THRESHOLD(sum, AVERAGE(sum) × mf)

Median filter res then Dilate res
mask ← res resized by a factor of blocksize

Algorithm 1 details the procedure used to generate the

motion mask. The AVERAGE function returns an average

of input elements. The THRESHOLD(A,b) function returns

a binary image, consisting of 0’s and 1’s. An output element

is set to 1 if the corresponding element in A is above the

threshold value b. Otherwise, it is set to 0. Median filtering

on the block level is used to remove spurious motion blocks

caused by small movements and camera noise. The result, res,

is then dilated to ensure that the edge pixels belonging to the

moving object’s contour are included in the motion mask. The

mask is then produced by resizing the res image by a factor

of blocksize.

B. Motion Mask Refinement

In Figure 4(a) and 4(c), motion masks have been overlayed

on to video frames for illustrative purposes. In actual opera-

tion, the mask is used to suppress static edge pixels before

passing the edge image to the symmetry detector. Images on

Fig. 4. Block Motion Masking
Left column: Images masked by the unrefined block motion mask.
Right column: Images masked using the refined block motion mask. The
symmetry line estimate from the tracker is shown in red. The refined mask is
generated based on this symmetry line estimate

the right column of the same figure is produced by applying

a refined motion mask to the source image. The refined mask

is produced through a two step process. Firstly, the location

of each block with motion, b, is reflected across the symmetry

line. The reflected location is searched using a local window.

If none of the blocks in the window is classified as moving, the

original block b is re-classified as static. This first step removes

motion that are not symmetric about the object’s symmetry

line, which may have been caused by the end effector, and

other moving objects. After the generation of a near-symmetric

mask, the second step attempts to remove holes and gaps in

the mask. This is achieved by looking for blocks that are

surrounded by multiple neighbours that contain motion. These

two steps are very efficient as they only operate on res, which

has fewer pixels than the source image. The refinement process

is a single pass operation.

IV. KALMAN FILTER

A Kalman filter, as described in [17], is used to estimate

symmetry line parameters. Hough (R, θ) index values are used

directly as measurements. A linear acceleration motion model

is used. The filter plant and measurement matrices are shown

below.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1
2 0

0 1 0 1 0 1
2

0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

H =
[

1 0 0 0 0 0
0 1 0 0 0 0

]

x =
[

R θ dR
dt

dθ
dt

d2R
dt2

d2θ
dt2

]T

Process and measurement noise were chosen empirically.

Measurement and process noise variables are assumed to be

independent. The noise values used for all experiments are as

follows. The R measurement variance is 9 pixels2 and the θ
variance is 9 degrees2. The diagonal elements of the process

covariance matrix are (1, 0.1, 10, 1, 10, 1). The odd elements

are the position, velocity and acceleration covariance of R, the

even elements are the θ covariances.

Data association and validation is performed using a val-

idation gate. The top symmetry lines, in terms of its Hough

votes, is given to the Kalman filter’s validation gate. Symmetry

line parameters that generate an error above 9.21 (2-DOF Chi-

square, P = 0.01) are discarded by the gate. If no symmetry

line passes through the gate without exceeding the Chi-square

error threshold, the next state will be estimated using the state

model alone.

To use the tracker in situations where new objects are being

discovered by a robot, it must have an automatic initialization

scheme. The initial state must be set to a value close to

the moving object’s symmetry line to ensure convergence. A

novel initialization method is used to find the object’s initial

state. The number of moving blocks returned by the motion

detector is continuously monitored. By looking for a sharp

jump in the detected motion, frames where objects begin

to move can be found. Symmetry lines detected from the

three time-consecutive frames after an object begins to move

are used to initialize the Kalman filter. Firstly, all possible

data associations across the three frames are generated. In

our experiments, the top three symmetry lines were used as

measurements for each frame. This produced 33 permutations.

Each generated data association permutation is used as Kalman

filter measurement sets. The Kalman filter is initialized using

the first measurement in the permutation, and updated using

the second and third. The validation gate error for the updates

are accumulated and logged. After iterating through all 27

permutations, the permutations are ranked according to their

errors. The best permutation, that is, the data association

sequence with minimum error, is used to initialize the Kalman

filter. This automatic initialization procedure is used to start

the tracker for all video sequences used in our experiments,

without any manual intervention.

V. OBJECT TRACKING RESULTS

The entire tracking system was implemented using C++

under Microsoft Windows XP, with no platform specific op-

timizations. The host computer was a notebook PC, with a

1.73GHz Pentium M processor and 2GB of 533MHz RAM.

The video frames are 640x480 pixels in size, and were

recorded at 25 frames per second. All experiments were

performed using the same tracker parameter values. The

Canny edge filter thresholds were set to 30 and 60, with an

aperture size of 3 pixels. The block motion detector used a

motion factor of 1.5. Borrowing from Randomized Hough

Transform [14], a sampling ratio of 0.6 was used to obtain

a random subset of the edge pixels.

Table I contains the execution times of the tracking code.

Each sequence, numbered 1 to 10, contains up to 400 video

frames. The code responsible for symmetry detection, block

motion masking, mask refinement and Kalman filtering were

timed independently. The average run time of these code

segments can be found under the “Average Time” heading of

the table. The column labelled “Init” contains the time taken

to perform automatic initialization as discussed at the end of

Section IV. The average frame rates obtained are shown in the

column labelled as “FPS”. Note that the tracker was able to

perform at above 40 frames per second for many sequences.

TABLE I

OBJECT TRACKER EXECUTION TIMES AND FRAME RATES

Average Time (ms) Init FPS

Sym Motion Refine Kalman (ms) (Hz)

1 37.87 4.84 0.86 0.09 10.41 22.91

2 16.76 4.76 0.75 0.06 9.74 44.77

3 17.95 4.85 0.85 0.04 10.69 42.22

4 18.31 4.74 0.75 0.04 11.90 41.96

5 33.69 4.87 0.87 0.05 11.38 25.33

6 20.84 4.94 0.85 0.04 13.18 37.50

7 35.29 5.01 0.87 0.13 11.32 24.22

8 34.48 4.94 0.79 0.14 11.14 24.79

9 18.19 4.91 0.79 0.06 11.83 41.75

10 27.01 4.89 0.82 0.06 12.50 30.51

The tracking system generates a rotated bounding box

around the object being tracked. The bounding box is oriented

such that two of its edges are parallel with the object’s

symmetry line. The size of the box is determined by the refined

motion mask. Figure 5 shows two example bounding boxes,

and the motion masks from which they were generated.

Fig. 5. Generation of rotated bounding boxes from refined motion masks
Left column: Symmetry-refined motion masks
Right column: Bounding boxes in green, symmetry lines in red

Frame sequences of the tracking results can be found

at the end of this paper. Videos of tracking results can be

downloaded from:

www.ecse.monash.edu.au/centres/irrc/li_iro2006.php

VI. CONCLUSION

The novel combination of using motion and reflectional

symmetry for real time object tracking has been demonstrated.

Tracking predictions were used successfully to improve the

efficiency of symmetry detection. In addition, the use of sym-

metry to refine motion-based segmentation has been shown.

The tracker can also generate a rotated bounding box, which

can be used as a processing window for other vision algorithms

to improve their efficiency. The bounding box may also be

useful as a means of generating positive learning examples for

training classifiers. The final system can track objects under

difficult illumination conditions. The results in Figure 6 show

that partially occluded objects can be successfully tracked, as

well as multi-colour and transparent objects. The timing results

show that the tracker can be operated in real time. Objects in

640x480 video sequences were successfully tracked at above

40 frames per second.

ACKNOWLEDGEMENTS

The authors would like to thank the ARC Centre for

Perceptive and Intelligent Machines in Complex Environments

(pimce.edu.au) for their financial support.

REFERENCES

[1] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR), vol. 1, no. 1.
IEEE Computer Society, 2001, pp. 511–518.

[2] S. Khan and M. Shah, “Object based segmentation of video using color,
motion and spatial information.” in CVPR (2), 2001, pp. 746–751.

[3] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, p. 91, Novem-
ber 2004.

[4] Y. Huang, T. S. Huang, and H. Niemann, “A region-based method for
model-free object tracking.” in ICPR (1), 2002, pp. 592–595.

[5] Y. Satoh, T. Okatani, and K. Deguchi, “A color-based tracking by kalman
particle filter.” in ICPR (3), 2004, pp. 502–505.

[6] D. Reisfeld, H. Wolfson, and Y. Yeshurun, “Context-free attentional
operators: the generalized symmetry transform,” Int. J. Comput. Vision,
vol. 14, no. 2, pp. 119–130, 1995.

[7] R. K. K. Yip, “A hough transform technique for the detection of
reflectional symmetry and skew-symmetry.” Pattern Recognition Letters,
vol. 21, no. 2, pp. 117–130, 2000.

[8] H. Ogawa, “Symmetry analysis of line drawings using the hough
transform.” Pattern Recognition Letters, vol. 12, no. 1, pp. 9–12, 1991.

[9] J. Ponce, “On characterizing ribbons and finding skewed symmetries,”
Comput. Vision Graph. Image Process., vol. 52, no. 3, pp. 328–340,
1990.

[10] G. Loy and A. Zelinsky, “Fast radial symmetry for detecting points of
interest,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 8, pp.
959–973, 2003.

[11] W. H. Li, A. Zhang, and L. Kleeman, “Fast global reflectional symmetry
detection for robotic grasping and visual tracking,” in Proceedings of
Australasian Conference on Robotics and Automation, M. M. Matthews,
Ed., December 2005.

[12] W. H. Li, A. M. Zhang, and L. Kleeman, “Real time detection and
segmentation of reflectionally symmetric objects in digital images,”
Accepted for publication at the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Beijing, China, October 2006.

[13] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect
lines and curves in pictures,” Commun. ACM, vol. 15, no. 1, pp. 11–15,
1972.

[14] L. Xu and E. Oja, “Randomized hough transform (rht): basic mech-
anisms, algorithms, and computational complexities,” CVGIP: Image
Underst., vol. 57, no. 2, pp. 131–154, 1993.

[15] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Process-
ing Using MATLAB. Prentice Hall, 2004.

[16] H. H. Nagel, “Formation of an object concept by analysis of systematic
time variations in the optically perceptible environment,” j-CGIP, vol. 7,
no. 2, pp. 149–194, Apr. 1978.

[17] Y. Bar-Shalom, T. Kirubarajan, and X.-R. Li, Estimation with Applica-
tions to Tracking and Navigation. John Wiley & Sons, Inc., 2002.

Transparent Object (#1) Orientation and Scale Changes (#6) Occluded Object (#2)

Fig. 6. Tracking Results. The sequence number shown in brackets next to the title is the same as that used in Table I. The symmetry line posterior estimate
produced by the Kalman filter is shown in red. Rotated bounding boxes are shown in green around the moving object.
Left column: Transparent object tracking. Every 15th frame shown
Middle column: Object tracked across scale and orientation changes. Every 30th frame shown
Right column: Tracking an object through occlusion. Every 10th frame shown

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

	IROS06PageNumber:
	0:
	7986767576208187: 2798
	054671052324291924: 2799
	004124933494612515: 2800
	14598182882405913: 2801
	0410734061199608: 2802
	4887537061011725: 2803

	TL1:
	0:
	23271973691525205: Proceedings of the 2006 IEEE/RSJ

	TL2:
	0:
	04821531720219846: International Conference on Intelligent Robots and Systems

	TL3:
	0:
	3729479204891329: October 9 - 15, 2006, Beijing, China

