
Real Time Detection and Segmentation of
Reflectionally Symmetric Objects in Digital Images

Wai Ho Li, Alan M. Zhang and Lindsay Kleeman
Intelligent Robotics Research Centre

Department of Electrical and Computer Systems Engineering

Monash University, Clayton, Victoria 3800, Australia

{ Wai.Li, Alan.Zhang, Lindsay.Kleeman } @eng.monash.edu.au

Abstract— Symmetry is a salient visual feature of many man-
made objects. This paper describes research into the detection
and segmentation of reflectionally symmetric objects in digital
images, without the use of a priori object models. The detection
method does not assume uniform object colour or texture, and
does not rely on prebuilt models such as 3D geometric primitives.
A novel detection algorithm has been developed to find lines of
reflectional symmetry in images. This detection algorithm can
operate at 10 frames per second on 640 by 480 pixel images. Using
the detected symmetry, objects are segmented with a dynamic
programming approach. Both algorithms have been extended to
accommodate skew symmetry.

I. INTRODUCTION

There are many definitions for Object Segmentation in the

area of Robotics and Computer Vision. For digital images, it

can be seen as an intelligent version of Image Segmentation. A

review of image segmentation techniques can be found in [1].

By incorporating high level knowledge, sections of an image

corresponding to a 3D object in the real world is identified,

and separated from the background. By doing this, a robot can

obtain useful semantic information about the environment. For

domestic robots, the ability to quickly and robustly segment

man-made objects in the household is highly desirable. For

example, a robot designed to clean and tidy desks will need

to locate and segment common objects such as cups, bowls

and books.

Object segmentation methodologies differ in their assumpt-

ions, as well as in their level of prior knowledge. When models

of objects are available prior to segmentation, it can be argued

that the system is in fact performing object recognition, by

matching sensor data with prebuilt models. The Generalized

Hough Transform [2] is an example of a model-based seg-

mentation approach. A predefined parameterized model of a

2D shape, essentially an object model, is required before the

transform can be applied.

In many situations, the a priori object information, such

as shape and colour, may not be available. The generation

of detailed object models can be costly and in many cases,

not fully automated. Hence, a robot that can segment objects

without using a complicated model is much desired, especially

for use in domestic environments. Returning to the desk

cleaning robot example, in the case where it encounters a cup

without its model, the ideal solution would be to have the

robot generate its own learning data by physically interacting

with the cup. In order to do this, the robot must begin by using

a model-free approach to object segmentation. The ability to

detect and segment objects quickly, ideally in real time, will

also greatly benefit the robot’s responsiveness and robustness

to changing environments.

Colour-based and intensity-based image segmentation is a

commonly used model-free approach to finding objects in

images. Recent research generally focus on colour images,

instead of single channel grey scale images. There are a

wide variety of techniques available [3]. Colour has proved

to be useful in segmenting a variety of entities. Skin colour

filters are widely used in face recognition and human tracking

applications. However, many man-made household objects are

multi-colour, consisting of contrasting colour segments. For

example, the cup shown in Figure 6 is very difficult to segment

in its entirety using colour alone.

Reflectional symmetry is a common trait in many man-

made objects. A surprisingly large number of objects around

domestic environments have strong lines of symmetry. By

using an object’s symmetry line as its model, the assumption

of consistent colour is no longer needed. Also, the exact shape

of an object’s contour is not required prior to segmentation.

The work presented here uses reflectional symmetry to detect

and segment objects in 2D digital images.

This paper is divided into two major sections. The first

section describes an improved implementation of our Fast

Symmetry detection algorithm [4]. Substantial modifications

have been made to the original algorithm to further improve

computational efficiency. This symmetry detection algorithm

has also been successfully employed in a real time, model-

free, object tracking system [5]. The second section of the the

paper will focus on the segmentation of symmetric objects. A

brief review of relevant literature and background information

can be found at the beginning of each section.

II. FAST SYMMETRY DETECTION

A. Similar Work

The Generalized Symmetry Transform [6] can detect

bilateral symmetry at different scales. It operates on every

possible pixel pair in the input image, and hence has a

computational complexity of O(n2), where n is the total

number of pixels in the input image. The transform does not

easily adapt to the detection of skew symmetry. Yip’s [7]

1-4244-0259-X/06/$20.00 ©2006 IEEE

Fig. 1. An edge pixel pair, shown in black, voting for a symmetry line with
parameters R and θ. Note that −π

2
< θ < π

2
and R is measured from the

image center.

symmetry detector uses mid-point pairs, each generated from

two edge pixel pairs. The algorithm has a complexity of

O(n4
edge), where nedge is the number of edge pixels. Ogawa

suggested the use of Hough transform on edge segments to find

lines of reflectional symmetry [8]. Other approaches include

the use of ribbons [9] and improvements of the Generalized

Symmetry Transform. While radial symmetry has been used

in real time applications [10], reflectional symmetry detectors

are generally used in offline processing applications, due to

their high computational cost.

B. Algorithm Description

Our approach performs symmetry detection on an image’s

edge pixels. In our experiments, we found that a million-

pixel image produces an edge image with roughly 10000

edge pixels. Of course, this number will depend on the visual

complexity of the scene, and the characteristics of the edge

filter. Apart from reducing data size, symmetry detection can

also benefit from the noise rejection, edge linking and weak

edge retention properties of edge filters. The Canny edge filter

was used to generate the edge images presented in this paper.

A polar parameterization is used for the symmetry lines, as

shown in Figure 1. Symmetry lines are represented by their

angle and distance relative to the center of the image. Edge

pixels are grouped into pairs and each pair votes for a single

symmetry line in parameter space. Unlike traditional Hough

Transform [11], which requires multiple votes per edge pixel,

our approach only requires a single vote per edge pixel pair.

This convergent voting scheme is similar to that utilized in

Randomized Hough Transform [12].

For each Hough angle bin θindex, the edge pixels are rotated

about the center of the image by a corresponding angle θ.

The rotated edge pixels are then quantized into a 2D array

Rot. Edge pixels are quantized based on their scanline after

rotation, as shown in Figure 2. Edge pixels on the same

horizontal scanline after rotation are placed in the same row

of Rot. Notice that any pair of rotated pixels from the same

scanline can only vote for vertical lines of symmetry. This

Algorithm 1: Fast Symmetry Detection

Input: I – Source Image

Output: sym – Symmetry Line Parameters (R, θ)

Parameters:

Dmin – Minimum distance threshold

Dmax – Maximum distance threshold

H – Hough Accumulator (BINSR by BINSθ matrix)

BINSR – Number of radius bins in H

BINSθ – Number of angle(theta) bins in H

Nlines – Number of symmetry lines returned

edgeP ixels ← (x,y) locations of edge pixels in I
H[][] ← 0
for θindex ← 0 to BINSθ − 1 do

θ ← θindex in radians

Rot ← Rotate edgeP ixels by angle θ. See Figure 2
for each row in Rot do

for each possible pair (x1, x2) in current row do
dx ← |x2 − x1|
if dx < Dmin then

continue to next pair

if dx > Dmax then
continue to next pair

x0 ← (x2 + x1)/2
Rindex ← x0 converted to Hough index

Increment H[Rindex][θindex] by 1

for i ← 1 to Nlines do
sym[i] ← max(Rindex, θindex) ∈ H
Bins around sym[i] in H ← 0

corresponds to the dashed symmetry line with angle θ prior to

the rotation operation. The algorithm only allows edge pixels

on the same scanline (same row in Rot) to pair up during

Hough voting. This guarantees that all votes will be made

for the same angle, shown as θ in Figure 2. Note that points

separated by a distance greater than Dmax or less than Dmin

are never paired, even if they belong to the same row.

There are two benefits in having a constant θ for each voting

iteration. Firstly, random memory access across θ in the Hough

accumulator is removed. Therefore, only a single row of the

accumulator needs to be cached during each iteration, instead

of the entire Hough accumulator. Secondly, the arithmetic

requirements to calculate the symmetry line parameters from

an edge pixel pair, as described in Figure 1, becomes greatly

simplified. The line radius R can be found by taking the

average of the x coordinates of the edge pixel pair, which

are readily available in Rot.

Symmetry line parameters are found by looking for peaks

in the Hough accumulator. The final for-loop in Algorithm 1

describes the non-maxima suppression algorithm used for peak

finding. Maximum values in the Hough accumulator H are

found iteratively. Each iteration is followed by setting the

maximum value and the neighbourhood of bins surrounding

Fig. 2. Edge pixel rotation and discretization procedure. Edge pixels (•) are
rotated by θ about the image center, marked as a +. Then, the horizontal
coordinate of the rotated pixels are inserted into the 2D array Rot. Pixels
from the same scanline are placed into the same row in Rot. The pixels in
the same row are paired up and votes for symmetry lines in R− θ parameter
space. The [3,1] rows in Rot will vote for the dashed symmetry line

it to zero. In general, the contribution of peak finding to

execution time was negligible when compared with the Hough

voting stage of the algorithm.

The edge pixel rotation operation has a computational

complexity of O(nedge), where nedge is the number of edge

pixels in the image. It is repeated BINSθ times. Its effect on

the overall algorithm execution time is negligible as it runs

in linear time. The majority of computation occurs during

the voting portion of the algorithm, where the accumulator H
is incremented. The amount of computation needed depends

on the Hough angle quantization and the vertical quantization

used in Rot. Assuming uniformly distributed edge pixels

across the rows of Rot, the algorithm requires BINSθ

D ×n2
edge

voting operations, where BINSθ is the number of Hough

angle divisions and D is the number of rows in Rot. By

increasing the number of angle divisions, we improve the

accuracy of the method but sacrifice execution time. The

reverse is true if we increase the number of rows in Rot.
In essence, the BINSθ

D term allows for an adjustable trade off

between detection accuracy and computational efficiency.

The voting scheme has been extended to allow for the

detection of skew symmetry. Figure 3(d) shows detection

results for a horizontally-skewed skull-and-crossbones poison

logo. This was achieved by voting for all lines passing

through the mid-point of an edge pair, in the same way

as the standard Hough transform. The algorithm’s order of

computational complexity remains the same when detecting

Skew Symmetry, as the number of angle divisions in the

Hough accumulator is fixed. In addition to the constant-factor

increase in computational cost, two additional matrices, the

same size as the Hough accumulator, are required. Please refer

to Lei and Wong’s work on skew symmetry detection [13] for

additional information concerning these extra Hough matrices.

C. Results

Figure 3 contains detection results of our fast symmetry

algorithm. Subfigures 3(a) and 3(b) show the symmetry lines

with the most votes in red. Note that in 3(a), both the symmetry

of the forearm and the symmetry between the forearm and

(a) (b)

(c) (d)

Fig. 3. Fast Symmetry Detection Results (a) Partially occluded, non-
uniformly textured object; (b) Multi-colour object; (c) Multi-object scene. Top
five symmetry lines shown, numbered in the order they were found during
detection; (d) Fast Symmetry algorithm extended to detect skew symmetry

its shadow were also detected, but they had much fewer

votes than the bottle. Subfigure 3(d) shows the detection of

skew symmetry using the algorithm, using a modified voting

procedure.

Subfigure 3(c) displays the detection results for a more

complicated arrangement of objects. The lines are labelled

according to the number of votes they received, with 1

being the symmetry line with the most votes. Notice that

the symmetry lines of all three objects were found. However,

background symmetries were also detected. Line 2 is due to

the symmetry of the long horizontal shadow and line 4 is

caused by inter-object symmetry, primarily between the two

cups as well as symmetry between the multi-colour cup and

the horizontal shadow. The detection of background symmetry

and inter-object symmetry is unavoidable due to the lack of

prior knowledge available to the detection algorithm. Whether

this behaviour is desirable will depend on the application. To

reject narrow symmetry, such as line 2 in subfigure 3(c), the

distance threshold Dmin in algorithm 1 can be increased. The

orientation of the symmetry line can also be used to reject

unwanted symmetry, especially when some prior knowledge of

the scene is available to the robot. For example, a humanoid

robot trying to manipulate cups and bottles on a table will

generally deal with near-vertical lines of symmetry only. As

such, the voting angles available to the symmetry detector can

be constrained accordingly.

An implementation of Algorithm 1 in C++ was used for

all experiments. The experimental platform was a desktop PC

with a Xeon 2.2GHz CPU and 1GB of main memory. No

platform-specific optimizations, such as SSE2 macro func-

tions, were used in the code. Referring to the parameters

defined in Algorithm 1, the hough accumulator had 180 angle

divisions (BINSθ). The number of radius divisions (BINSR)

TABLE I

EXECUTION TIME OF THE FAST SYMMETRY DETECTION ALGORITHM

Image Image No. of

Number Dimensions Edge Pixels Execution Time (ms)

1 640 X 480 9766 136

2 640 X 480 15187 224

3 640 X 480 9622 153

4 640 X 480 9946 141

5 640 X 480 9497 128

6 640 X 480 9698 145

7 640 X 480 11688 167

8 640 X 480 11061 180

9 640 X 480 12347 196

10 640 X 480 8167 81

11 610 X 458 6978 97

was equivalent to the size of the image diagonal in pixel units.

Dmax was half the image width and Dmin was set to 5 pixels.

The peak finding returned the five strongest symmetry lines.

Borrowing from randomized hough transform [12], the list of

edge pixels were sampled at a ratio of 25% to obtain the timing

results shown in Table I. The execution times include time

required for edge filtering as well as non-maxima suppression

peak finding.

The execution times confirm that the amount of computation

increases as the number of edge pixels extracted from the input

image increase. More complicated images require more time as

they tend to generate more edge pixels. The detection time for

640x480 images ranged from 80 to 224 milliseconds. This will

allow for frame rates between 5 to 12 Hz. This is acceptable

for many real time applications. The use of a processing

window or smaller images, a faster PC and processor-specific

optimizations can further improve the speed of the algorithm

to meet more stringent real time requirements. The sampling

ratio of edge pixels can also be adjusted at run time to alter

the detection speed. Frame rates of 20Hz were achieved by

reducing the input image size to 320x240 pixels.

III. SEGMENTATION OF SYMMETRIC OBJECTS

Having obtained the location of the symmetry line, the

next logical step is object segmentation. The approach chosen

performs segmentation by finding an object’s outline. Simply

identifying all edge pixels that voted for the symmetry line

is not acceptable due to the large number of coincidentally

matching pairs of edge points. A more robust method is

needed. But before continuing, a definition for “object outline”

is required. Because no prior model or geometric properties of

the object are assumed apart from its symmetry, a definition is

difficult. We define an object outline as the most continuous
contour symmetric about the object’s line of symmetry. While

the definition is not perfect, it does allow for the problem to

be solved robustly.

The task then becomes finding the most continuous and
symmetric contour in the edge image, about a detected sym-

metry line. For real time applications the algorithm used to

solve this problem needs to have predictable execution times.

This makes approaches that require initialization and multiple

iterations, such as active contours, unsuitable. The proposed

algorithm uses a single pass Dynamic Programming (DP)

approach. While much research has been performed on the

use of DP to find contours in images [14]–[17], they require

a human-selected starting point. For the object outlines being

considered, a human user would have to provide an initial

pair of symmetric pixels on the outline. As a major goal of

object segmentation is image understanding without human

intervention, we chose an approach that requires no human

intervention. Section III-A describes a preprocessing step that

removes non-symmetric edge pixels, tentatively named the

Symmetric Edge Pair Transform. Section III-B describes the

dynamic programming stage. Results and processing times are

presented in Section III-C.

A. The Symmetric Edge Pair Transform

Algorithm 2: Symmetric Edge Pair Transform (SEPT)

Input: Edge image, Edge Gradient Orientation

information

Output: SeptBuf – Result of Transform

Parameters:

MAXhw – half of the maximum expected width of

symmetric objects

WND – the allowable deviation of the mid point of an

edge pair from the symmetry line.

Set all SeptBuf to −1
for each row r of the edge image do

for each pair of edge pixels in the same row do
if the gradient orientations of the pixels are
symmetric then

w ←distance between the pixel pair

d ←distance between the mid point of the

pair and the symmetry line

if w/2 < MAXhw And d < WND then
if SeptBuf [r + 1][ceil(w/2)] < W (d)
then

SeptBuf [r + 1][ceil(w/2)] ← W (d)
where W (•) is a weighting function

We introduce the Symmetric Edge Pair Transform (SEPT)

as a preprocessing stage. The edge pixels are first rotated such

that symmetric edge point pairs lie in the same row. The

idea behind the transform is to parameterize pairs of near-

symmetric points by their distance of separation and deviation

of their mid point from the symmetry line. The algorithm

has also been generalized to accommodate skew symmetry

by using a non-vertical symmetry line after rotating the edge

pixel pairs. The transform is described in Algorithm 2.

The weighting function W (•) in Algorithm 2 is required to

be a monotonically decreasing function, such that the higher

(a) (b)

Fig. 4. SEPT performed using the symmetry detection result in Figure 3(a).
(a) The SEPT buffer, where brighter pixels represent higher weighting values;
(b) Highest scoring continuous contour thickened and overlaid on the SEPT
buffer.

the deviation of the mid point from the symmetry line, the

lower the weight given. In our implementation, the weighting

function W (d) = 1 − d
2WND was used. The variables d and

WND are defined in Algorithm 2. Figure 4(a) is an image

visualization of the SeptBuf generated from Figure 3(a),

where brighter pixels represent higher weights. The entire

SeptBuf is 573 by 355 pixels, but only the portion containing

the object is shown in Figure 4(a). Notice the numerous

coincidentally symmetric edges on the interior of the bottle,

and in the background.

B. Finding Continuous Symmetric Contours with Dynamic
Programming

If SeptBuf is treated as a weighted edge image, then the

problem of finding the most continuous and symmetric contour

in the original edge image becomes one of finding the most

continuous contour in SeptBuf . And this is done using a

dynamic programming approach. The algorithm constructs a

table of cumulative scores the same size as SeptBuf , where

a high scoring cell indicates that there is a continuous contour

passing through it. The weights in SeptBuf affect the score

when moving from one cell to the next. The details of the

approach is represented in Algorithm 3. Step 1 calculates the

score of the current cell from its 3 neighbours in the previous

row. It finds the best score arising from vertical continuity.

backPtr keeps track of which of the 3 neighbouring cells

produced the best score for the current cell. Step 2 scans

SeptBuf from left to right, calculating the scores obtained

from horizontal continuity. Step 3 looks for horizontal conti-

nuity from right to left. This could cause cycles to form in the

same row of the backPtr array. To prevent these cycles a copy

Fig. 5. Object Segmentation and Contour Refinement. The object outline
discovered by back tracking from the maximum value in the score table is
shown on the left. Object outline after Contour Refinement is on the right

of backPtr is made in Step 1. If the score from horizontal

continuity is higher than from vertical continuity then the

higher score is recorded, and backP tr is updated. Horizontal

continuity is given less reward than vertical continuity. The

reason for this is to reject long horizontal edge segments,

which are technically symmetric about its mid point. The

symmetry detected for these straight lines very rarely represent

actual objects. Humans generally consider symmetric objects

as those that have symmetric boundaries along the direction of
the mirror line. If the horizontal continuity reward is too high,

it may also lead to unwanted zig-zag patterns in the generated

contours.

After filling the score table, the “best” symmetric contour

can be found by starting at the highest scoring cell, and back

tracking through cells of lower weight. The back tracking

algorithm is described in Algorithm 4. Note that both copies

of back pointers are utilized by the algorithm so that there will

be no purely horizontal segment in the contour. By keeping a

list of position indices {r, c} during the back tracking process,

the contour of the object can be extracted. The column index

c indicates the horizontal distance of the contour from the

symmetry line. An example of the resulting contour can be

seen superimposed on to SeptBuf in Figure 4(b) and in the

left image of Figure 5.

The contour obtained thus far does not directly correspond

to edge pixels. This is due to the tolerance introduced in

the SEPT preprocessing. In order to produce a contour that

corresponds to actual edge pixels, a refinement stage was

added. In this stage, the same window size used in the SEPT,

WND, is employed to refine the contour. By looking for

edge pixels near the symmetric contour, within the window,

the algorithm produces a new, near-symmetry outline. The

contour refinement stage is similar to Algorithm 3, substituting

Algorithm 3: Finding Continuous Symmetric Contours

with Dynamic Programming

Input: SeptBuf
Output: sTab – Table of scores, same size as SeptBuf
backPtr – back pointers

Parameters:

Himg – image height

MAXhw – half of the maximum expected width of

symmetric objects

{Pver, Rver} – penalty/reward for vertical continuity

{Phor, Rhor} – penalty/reward for horizontal continuity

sTab[][] ← 0
for r ← 1 to Himg do

Step 1, vertical continuity

for c ← 1 to MAXhw do
if SeptBuf [r][c] is not −1 then

cost ← SeptBuf [r][c] ∗ Rver

else
cost ← Pver

vScore[c] ← max

⎧⎪⎪⎨
⎪⎪⎩

0
sTab[r−1][c−1] + cost
sTab[r−1][c] + cost
sTab[r−1][c+1] + cost

if vScore[c] > 0 then
Set backPtr[r][c] to record which of the 3

neighbouring cells was used to produce

vScore[c]

backPtrAux[r][c] ← backPtr[r][c]

Step 2, horizontal continuity from left to right

prevScore ← neg. inf.
for c ← 1 to MAXhw do

if SeptBuf [r][c] is not −1 then
cost ← SeptBuf [r][c] ∗ Rhor

else
cost ← Phor

hScore ← prevScore + cost

if vScore[c] >= hScore then
prevScore ← vScore[c]
columnPtr ← c

else
prevScore ← hScore

if sTab[r][c] < prevScore then
sTab[r][c] ← prevScore

Set backP tr[r][c] to record position

{r, columnPtr}

Step 3, horizontal continuity from right to left
Repeat Step 2, moving right to left in column index

Algorithm 4: Back tracking highest score in the score table

Input: sTab, backP tr, backP trAux
Output: {r, c} – {Row, column} indices

{r, c} ← position of MAX(sTab)

while sTab[r][c] is not zero do
{r, c} ← backPtr[r][c]
if r did not change, i.e. no vertical position change
then

{r, c} ← backPtrAux[r][c]

(a) (b)

Fig. 6. Segmentation of a multi-colour object. The contour has been
thickened, and is shown in purple. The symmetry line, in yellow, was obtained
directly from the symmetry detection results shown in Figure 3(b)

the SeptBuf with the edge image. Results from contour

refinement is shown in the right image of Figure 5.

C. Results

Figure 6 shows the segmentation of a multi-colour object.

This result demonstrates the algorithm’s ability to segment

objects of non-uniform colour. Note that the edge image was

also quite noisy due to texture on the cup surface and on

the book in the background. This noise did not adversely

affect the segmentation results. In Figure 7, all three symmetric

objects were able to be segmented using our approach. Note

that, in all of our results, no prior information in the form of

geometric models, object colour or texture were used. The only

information received by the segmentation algorithm are the

detected symmetry line parameters and the edge image. Due

to shadows and specular reflections, the vertical side edges of

the small, multi-colour cup were distorted and had very large

gaps. Hence, the more symmetric and continuous elliptical

contour of the cup’s opening was returned by the segmentation

algorithm. There is a slight distortion in the detected ellipse,

which resulted because of large gaps in the outer rim of the

cup in the edge image. This produced a contour that contained

a combination of the inner and outer rim of the cup’s opening.

Table II contains execution times of a C++ implementation

of the object segmentation algorithm. The same computer

described in Section II-C was used for these experiments. The

image numbers are the same as those used in Table I. The

test cases with smaller score tables are able to be processed

at 30 frames per second (FPS). Test cases with larger tables

can still be processed at 20FPS. The third column of Table II,

labelled “No. of Edge Pairs”, was the number of edge pixel

Fig. 7. Object segmentation performed on a scene with multiple objects
using the results from Figure 3(c). The object outlines have been thickened
and rotated such that their symmetry lines are vertical

TABLE II

EXECUTION TIME OF THE OBJECT SEGMENTATION ALGORITHM

Image Size of Cumulative No. of Execution Time (ms)

No. Score Table Edge Pairs SEPT+DP †CR

1 356 x 576 (= 205056) 77983 26 4

2 322 x 482 (= 155204) 142137 25 4

3 322 x 482 (= 155204) 65479 19 3

4 326 x 493 (= 160718) 68970 21 4

5 402 x 476 (= 191352) 67426 36 7

6 382 x 801 (= 305982) 44901 36 8

7 349 x 556 (= 194044) 90104 26 6

8 345 x 546 (= 188370) 133784 28 4

9 402 x 777 (= 312354) 121725 40 8

10 393 x 705 (= 277065) 177077 32 7

11 383 x 722 (= 276526) 51475 32 6
†CR: contour refinement stage

pairs processed by the SEPT. In our implementation, the SEPT

code that filled the SeptBuf and the dynamic programming

code were placed within the same loop to improve efficiency.

As such, their combined execution time is shown in the

“SEPT+DP” column. Looking at Table II, the size of the

cumulative score table appear to be the main factor affecting

the execution time. This agrees with expectations as a score is

calculated for each entry in the table. The maximum expected

size of objects is set to be the width of the image. In

practice, the size of the objects can be restricted to more

reasonable bounds, especially considering the presence of

distance thresholds in our symmetry detection algorithm. This

will further improve execution time.

IV. CONCLUSION

A pair of algorithms designed to detect and segment re-

flectionally symmetric objects in digital images have been

detailed. Their execution times indicate that both algorithms

can be applied in real time applications. The Fast Symmetry

detector has been successfully applied to multi-colour objects

and objects with irregular textures. It is also able to locate

multiple symmetric objects, including a partially occluded

object, from the same scene. The dynamic programming

approach is able to segment objects in the presence of noisy

edge pixels caused by shadows, background clutter and object

texture. Both algorithms are quite robust to inter-object occlu-

sions, and were able to find and segment the visible portion

of occluded objects.

ACKNOWLEDGEMENT

The authors would like to thank the ARC Centre for

Perceptive and Intelligent Machines in Complex Environments

(pimce.edu.au) for their financial support.

REFERENCES

[1] N. R. Pal and S. K. Pal, “A review on image segmentation techniques.”
Pattern Recognition, vol. 26, no. 9, pp. 1277–1294, 1993.

[2] D. H. Ballard, “Generalizing the hough transform to detect arbitrary
shapes,” in Readings in Computer Vision: Issues, Problems, Principles,
and Paradigms, M. A. Fischler and O. Firschein, Eds. Los Altos, CA.:
Kaufmann, 1987, pp. 714–725.

[3] W. Skarbek and A. Koschan, “Colour image segmentation — a survey,”
Institute for Technical Informatics, Technical University of Berlin, Tech.
Rep., October 1994.

[4] W. H. Li, A. Zhang, and L. Kleeman, “Fast global reflectional symmetry
detection for robotic grasping and visual tracking,” in Proceedings of
Australasian Conference on Robotics and Automation, M. M. Matthews,
Ed., December 2005.

[5] W. H. Li and L. Kleeman, “Real time object tracking using reflectional
symmetry and motion,” Accepted for publication at the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Beijing, China, October 2006.

[6] D. Reisfeld, H. Wolfson, and Y. Yeshurun, “Context-free attentional
operators: the generalized symmetry transform,” Int. J. Comput. Vision,
vol. 14, no. 2, pp. 119–130, 1995.

[7] R. K. K. Yip, “A hough transform technique for the detection of
reflectional symmetry and skew-symmetry.” Pattern Recognition Letters,
vol. 21, no. 2, pp. 117–130, 2000.

[8] H. Ogawa, “Symmetry analysis of line drawings using the hough
transform.” Pattern Recognition Letters, vol. 12, no. 1, pp. 9–12, 1991.

[9] J. Ponce, “On characterizing ribbons and finding skewed symmetries,”
Comput. Vision Graph. Image Process., vol. 52, no. 3, pp. 328–340,
1990.

[10] G. Loy and A. Zelinsky, “Fast radial symmetry for detecting points of
interest,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 8, pp.
959–973, 2003.

[11] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect
lines and curves in pictures,” Commun. ACM, vol. 15, no. 1, pp. 11–15,
1972.

[12] L. Xu and E. Oja, “Randomized hough transform (rht): basic mech-
anisms, algorithms, and computational complexities,” CVGIP: Image
Underst., vol. 57, no. 2, pp. 131–154, 1993.

[13] Y. Lei and K. C. Wong, “Detection and localisation of reflectional
and rotational symmetry under weak perspective projection.” Pattern
Recognition, vol. 32, no. 2, pp. 167–180, 1999.

[14] P. Yan and A. A. Kassim, “Medical image segmentation with minimal
path deformable models,” in Proceedings of the International Confer-
ence on Image Processing ICIP’04, vol. 4, 2004, pp. 2733–2736.

[15] B. Lee, J.-Y. Yan, and T.-G. Zhuang, “A dynamic programming based
algorithm for optimal edge detection in medical images,” in Proceedings
of the International Workshop on Medical Imaging and Augmented
Reality, 2001, pp. 193–198.

[16] E. Mortensen, B. Morse, W. Barrett, and J. Udupa, “Adaptive boundary
detection using live-wire two-dimensional dynamic programming,” in
IEEE Proceedings of Computers in Cardiology, 1992, pp. 635–638.

[17] T. Yu and Y. Luo, “A novel method of contour extraction based
on dynamic programming,” in Proceedings of the 6th International
Conference on Signal Processing (ICSP’02), Beijing, China, 2002, pp.
817–820.

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

	IROS06PageNumber:
	0:
	6144396835220843: 4867
	06052021341734726: 4868
	5578597201907184: 4869
	7418712073592737: 4870
	3349513790356858: 4871
	6671892949036669: 4872
	0243151808605801: 4873

	TL1:
	0:
	7840432509932889: Proceedings of the 2006 IEEE/RSJ

	TL2:
	0:
	6233646452896533: International Conference on Intelligent Robots and Systems

	TL3:
	0:
	7122028733598381: October 9 - 15, 2006, Beijing, China

