SERVICE AND METASTABILITY PERFORMANCE

OF ARBITERS

by

Lindsay Kleeman

(B.E. Hons.I, B.Math. Hons.I)
Supervisor : Professor Antonio Cantoni

A thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy
in
Electrical and Computer Engineering
at
The University of Newcastle
New South Wales, 2308

Australia

August 1986

I hereby certify that the work embodied in this thesis
is the result of original research and has not been submitted

for a higher degree to any other University or Institution.

s L Koo

ACKNOWLEDGEMENTS

I wish to sincerely thank my supervisor Professor Tony Cantoni for
his guidance, fruitful ideas, motivation and uncompromising insistence on
a rigorous approach to rTesearch. His wvigour in uncovering hidden
assumptions and exploring fundamental issues of importance has been
greatly appreciated. My supervisor’'s wife, Stephnie, and children,
Michael and Simon, are warmly thanked for welcoming me into their
household during our stay in Pisa, Italy.

My grateful appreciation is also given to:

- the Australian Computer Research Board for the financial support of
a Postgraduate Scholarship and research grants relevant to the
thesis;

- all postgraduate students and academic staff in the Department for
creating a stimulating, friendly and scholastic environment:

- the technical staff of the Department, in particular Ron Goodhew,
Fred Martinez, Peter McLaughlan, Fred Huang and Lloyd Jennings for
their helpful and friendly assistance;

- the secretarial staff of the Department for their help in preparing
papers and organisational matters;

- Ildiko de Souza for helping to type this thesis and Wanda Lis for
preparing diagrams within the thesis:

= the Department for generously financing my travel expenses to the
Performance '86 and Sigmetrics 1986 conference in the USA;

- the Istituto di Elettronica e Telecomunicazioni, Universita di Pisa
for their assistance during my visit in 1984.

Finally, I would like to thank Louise, for her love, support and

understanding during the whole course of my Ph.D.

- ii -

ABSTRACT

The thesis reports the results of a study of issues related to the
performance of arbiters. Arbiters are digital circuits which are
inherently susceptible to metastable behaviour because of the asynchronous
nature of their inputs. The thesis examines a number of fundaﬁental
issues concerning metastability in digital circuits and establishes their
relevance to the performance of arbiters and synchronisers. Furthermore,
the thesis presents new models and new analytical tools for evaluating the
service and utilisation performance of arbi;ers.

The question of the unavoidability of metastability is examined in
the thesis and previous results are extended to enable direct application
to circuits with realistic waveforms. It is also shown in the thesis that
redundancy and masking techniques are ineffectual in improving the
performance of synchronisers with respect to metastability.

A general model for analysing the metastable performance of digital
systems, called the aperture model, is developed in the thesis. One
application of the aperture model is to the evaluation of the performance
of various schemes designed for improving the metastable performance of
synchronisers. The development of the aperture model is an important step
towards the analysis of the rate of occurrence of failure due to
metastability in arbiters.

The thesis identifies a new class of arbiters referred to as batched
arbiters. This batching mechanism can be combined with primary service
disciplines, such as fixed priority and round robin to generate new
service disciplines. Models are developed for these arbiters which
include many practical circuit parameters not previously considered. The

modelling has been carried out for both asynchronous and clocked arbiters.

= 1ii =

New analytical tools for the analysis of the service and utilisation
performance of arbiters are developed in the thesis. The techniques are
based on imbedded Markov chains. Arbitrary service time distributions can
be handled by the analysis techniques developed, and the performance under
light and heavy request loadings is derived. The analysis techniques are
applied to both asynchronous and clocked arbiters, and a wvariety of
service disciplines.

The aperture model for metastability of digital circuits is combined
with the analysis techniques for the arbiter models adopted to derive the
metastable failure rate performance of various arbiters. Furthermore, the
impact of certain internal arbiter functions, such as the request

resetting mechanism in clocked arbiters is evaluated.

- iv -

TABLE OF CONTENRNRTS

Acknowledgements

Abstract

Table of Contents

CHAPTER 1 : INTRODUCTION
1.1 Introduction, History and Motivation
1.2 Contributions of the Thesis
1.3 Outline of the Thesis

CHAPTER 2 : ARBITERS

2.1 Introduction
2.2 Definition of an Ideal Arbiter
2.3 Applications of Arbiters in Systems

2.3.1 Bus Arbitration
2.3.2 Interrupt Distribution

2.4 Arbitration Disciplines and Implementations

General Model of Arbitration Disciplines
First Come First Served (FCFS)

Fixed Priority Arbitration Discipline
Dynamic Priority Arbitration Disciplines
Batched Disciplines

B2 DD DD N
0 s
Ul W N~

2.5 Correctness Proving
2.6 Performance Measures

2.6.1 Service Performance
2.7 Reliability of Arbiters

2.8 Conclusion

Page No.

ii

iv

1.1-8

1.1

v
no

A
)]

[\

.12

.12
13
.14
.18
.23

D NDN NN

2.31

CHAPTER 3
3.1
3.2
3.3

3.4

3.5

3.6

3.7

3.8

CHAPTER 4

4.1

4.2

4.3

METASTABLE BEHAVIOUR

Introduction

Examples of Metastable Behaviour

Metastable State — Definition and Characteristics
Fundamental Unavoidability of Metastable Behaviour
Mathematical Preliminaries

Statement of the Extended Theorem

Applications of Theorem 3.1
Conclusions

Wwww
s
W N -

The Importance of the Metastable Problem in Systems

Modelling Metastable Failure Probability

3.6.1 First Order Model

3.6.2 Exponential Model Based on Experimental
Results

3.6.3 Aperture Model for a Flip-Flop and

Calculation of a Synchroniser Failure Rate
Techniques for Improving Metastable Reliability

Fast Devices

Extended Settling Time

Pausable Clock and Metastable Detection
Techniques

www
~ ==
(CV I\ R

3.7.4 Schmitt Trigger Synchroniser
3.7.5 Redundancy and Masking Techniques
3.7.5.1 Masking in Synchronisers
3.7.5.2 Modelling of the General Redundant
Synchroniser
3.7.5.3 Statement and Proof of the Result
3.7.5.4 Observations
Conclusion

ANALYSIS APPROACHES AND MODELLING OF ARBITERS
Introduction
Queueing Theory Techniques

Markov Approach to the Analysis of Batched Arbiters

4.3.1 Examples of Asynchronous Fixed Priority
Batched Arbiters

4.3.2 Fixed Priority Batched Arbiter Model

4.3.3 Re-request Time and Service Time Modelling

w

W www

W R b

.1-66

.10
« L1
.16
.18
.26
.28
.28
.31
.32

.36

.37
.38

.38
.43
.51
.51
.55
.60
.65

.65

.1-27

.16
.18

4.4

4.5

4.6

CHAPTER 5

5.1
5.2
5.3
5.4

5.5

5.6

5.7

5.8

- vi -

Markov Approach to Analysis of Non Batched Arbiters

4.4.1 Example of an Asynchronous Non Batched Fixed
Priority Arbiter

Monte—Carlo Analysis Approach

Conclusions

ANALYSIS OF ASYNCHRONOUS BATCHED FIXED PRIORITY
ARBITERS

Introduction

State Definition

Markov Property

Derivation of State Transition Propabilities

Limiting Properties of the Probability Transition
Matrix

5.5.1 Principle Limiting Results as n-
5.5.2 Light Request Loading Limit of Probability
Transition Matrix
5.5.3 Heavy Request Loading Limits of the
Probability Transition Matrix

Performance Parameters

Utilisation

Mean Waiting Time for Each Requester
Metastable Reliability Performance
Light Reguest Loading Limits of
Performance Parameters

5.6.5 Heavy Request Loading Limit of
Performance Parameters

oo
-0303030)
B W N =

Computer Study and Numerical Results

5.7.1 Assumptions and Parameter Selection

5.7.2 Proportion of Time Allocated to Each
Requester

5.7.3 Mean Waiting Time for Each Requester

5.7.4 Metastable Failure Rate

Conclusion

.19

.20

.25

2T

.1-54

.10
.12
.14
17
.17
.19
.20
.28
.30
.33
e
.35
.43

.54

CHAPTER 6
6.1
6.2
6.3

6.4

6.6

6.7

CHAPTER 7

T2

7.3

7.4

7.6

T.7

- vii -
ANALYSIS OF NON BATCHED FIXED PRIORITY ARBITERS
Introduction
State Definition and Markov Property
State Transition Probabilities

Limiting Properties of the Probability Transition
Matrix

6.4.1 Steady State Limiting Results
6.4.2 Light and Heavy Request Loading Limits

Performance Parameters

6.5.1 Utilisation Performance

6.5.2 Mean Waiting Times

6.5.3 Metastable Reliability Performance
6.5.4 Limiting Performance Parameters

Computer Study and Results

6.6.1 Proportion of Time Allocated to Each
Requester

6.6.2 Mean Waiting Time for Each Requester

6.6.3 Metastable Failure Rate

Conclusion

CLOCKED BATCHED ARBITERS - MODELLING AND METASTABLE

FAILURE MODES

Introduction

Examples of Clocked Batching Arbiters

7.2.1 Example of a Centralised Clocked Batched
Arbiter

7.2.2 Example of a Decentralised Clocked Batched
Arbiter)

Modelling Assumptions and Definitions

Timing Assumptions

.3.1
.3.2 Request and Service Modelling
.3.3 State Definition

=] =] =]

Zero to Non Zero Batch Transition
No Resetting Clocked Batched Arbiter
Half Resetting Clocked Batched Arbiter

Direct Resetting Clocked Batched Arbiter

B

o))

addD

-
w

o

w

DO D
= O O W

K,

.1-34

.15
.22
.28

.34

.143

O wm

o

.12

.14

7.8

7.9

7.10

7.11

CHAPTER 8

8.2

8.4

CHAPTER 9

9.1

8.2

APPENDIX A

APPENDIX B

APPENDIX C

- viii -
7.7.1 Markov Property of the Direct Resetting
Version
7.7.2 Assessment of the Markov Approximations

Comparison of Efficiency and Service Performance

Metastable Bebaviour of the Clocked Batched

Arbiters

7.9.1 TFailure due to Synchronisation of Rising
Edges of Requests

7.9.2 Falling Request Edge Failure of No
Resetting Clocked Batched Arbiter

7.9.3 Falling Request Edge Failure of Half
Resetting Clocked Arbiter

7.9.4 Falling Request Edge of Direct Resetting
Clocked Batched Arbiter

Comparison of the Metastable Reliability of the
Resetting Strategies

General Conclusions

PERFORMANCE COMPARISONS OF ARBITRATION DISCIPLINES

Introduction

Service Performance

8.2.1 Proportion of Time and Mean Waiting Time
Results

8.2.2 Standard Deviation of Waiting Time Results

Normalised Metastable Failure Rate Performance

8.3.1 Determination of NMFR f{for Each Discipline
8.3.2 Discussion of NMFR Results

Conclusions

CONCLUSIONS AND FURTHER WORK
Summary and Conclusions

Suggestion for Further Research

PROOF AND COMMENTS ON THEOREM 3.1
DERIVATION OF EQUATION (5.9)

DERIVATION OF EQUATION (5.11)

7.20

7.24

7.33

7.35

T.37

7.39

§.24

8.24
8.30

8.41

APPENDIX D

APFENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

APPENDIX K

- ix -

PROOFS OF THEOREMS 5.1 AND 5.2

DERIVATION OF THE CONDITIONAL MEAN WAITING TIME
FOR THE FIXED PRIORITY BATCHED ARBITER MODEL

PROOFS OF CONVERGENCE OF EQUATIONS (5.56), (5.61)
AND (5.66)

PROOF OF THEOREMS 6.1 AND 6.2

DERIVATION OF THE CONDITIONAL MEAN WAITING TIME
FOR THE FIXED PRIORITY ARBITER MODEL

~ JUSTIFICATION FOR EQUATIONS (6.23), (6.28)

AND (6.34)

THE EFFECT OF NON IDEALISED TIMING MODELLING
IN CLOCKED BATCHED ARBITERS

DERIVATION OF TRANSITION PROBABILITIES FOR THE
NO RESETTING CLOCKED BATCHED ARBITER OF CHAPTER 7

AUTHOR’S PUBLICATIONS

REFERENCES

w16

.2-11

-1.1-

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION, HISTORY AND MOTIVATION

This thesis is primarily concerned with the modelling and analysis
of the performance of arbiters. In a digital system, an arbiter is a
circuit that processes a set of requests for a resource to generate one
and only one acknowledge, which grants access to the resource. The
characteristics of arbiters are key factors in determining the overall
performance of digital systems due to the central role of arbiters in
primitive resource allocation. Two aspects of the performance of arbiters
are examined in detail in this thesis. From the traditional viewpoint of
service and utilisation performance, the thesis develops new models and
analysis techniques. From a reliability performance viewpoint not often
considered, the thesis develops new models and analysis techniques for
evaluating the effects of metastability, a phenomenon inherent to arbiters
due to the asynchronous nature of request inputs.

Considerable attention has been given in the literature to the
problem of designing efficient arbiters [B:1;, B.4, C.1, C.5, F.1, IL.2,
1.3, K.3, K.13, L.4, M.2, M.9, P.1, P.4, R.1, S.1, T.1, T.3]. However,
considerably less attention has been given to the evaluation of the
performance of arbiters. Most of the work reported in the literature
describes Monte-Carlo simulation approaches for evaluating the service and
utilisation performance of arbiters [B.1, H.2, K.13, M.5, S.1], and a
small number of papers develop analytical tools [M.5, M.9]. A factor
important in determining arbiter performance is the service discipline.
The service discipline defines the order in which pending requests are

serviced. A range of disciplines are considered in the literature. These

-1.2 -

include fixed priority [B.1, B.3, C.17, H.2, I.2, K.13, M.9]. round robin
fB.1.0B:4,4C:5,0.G17. K13, M.2], first come first served [B.1, K.14, S.1]
and dynamic priority disciplines [B.1, F.1, L.4, T.1]. Furthemore, an
important new class of arbiters, termed batched arbiters, is identified
and a suitable model is developed in the thesis. A batched arbiter
employs a lock out mechanism on arriving requests when pending requests
exist, to prevent persistent high priority requesters hogging the resource
[C.2, C.5, T.1, T.2]. 1In the thesis, the batching mechanism is extended
to generalise existing disciplines.

Based on an ideal model for a FCFS arbiter and exponential service
and re-request time distributions, standard queueing theory results can be
applied to analyse the service and utilisation performance [G.2, K.12].
Except for multi-level FCFS [M.9], the performance of other disciplines
has been evaluated using Monte-Carlo simulation [B.1, H.2, K.13, M.5]. An
incomplete and somewhat dubious analysis of a fixed priofity arbiter is
presented in [H.2]. The thesis develops an analysis technique applicable
to a wide range of batched and non batched disciplines. The analysis
techniques developed are based on imbedded Markov chains [G.2, K.12],
which do not seem to have been applied previously, a.nd yet prove to be
valuable for the analysis of practical arbiter systems. Furthemore, the
service time distributions in this analysis are not limited to the
exponential distribution. In fact, the service distributions may be
arbitrary, including deterministic service times. The relative merits of
different analysis approaches and the applicability of the underlying
assumptions are discussed in the thesis.

Although the existence of practical arbiter circuit parameters, such
as propagation delays, is recognised in the literature [B.1, C.1, G.4,

K.13, S.1, T.3], the analytical models employed in the analyses of the

= 1.5 -

performance of arbiters do not incorporate these non ideal circuit
parameters. Based on the examination of a number of practical arbiter
circuits, the thesis formulates models which incorporate these non ideal
paramaters. Practical arbiters may be clocked [B.1, C.2, C.17, F.1, G.4,
H.2, I.2, K.13, L.4, M.9] or asynchronous [C.1, C.5, C.12, C.13, M.2, P.4,
Sali i Tagily Analytical techniques for evaluating the performance of
clocked arbiters do mnot appear in the literature, although some °
Monte-Carlo simulations with realistic modelling exist [G.4, H.2]. The
thesis develops realistic models for clocked arbiters. The extended
models for both asynchronous and clocked arbiters mentioned above are
amenable to the analysis technique of imbedded Markov chains developed in
the thesis.

Metastability in a digital system is a malfunction corresponding to
the circuit state remaining indefinitely between two stable states, that
can produce ambiguous state interpretation and other erronecus effects
within the circuit. While the existence of problems due to metastability
is recognised in some of the literature on arbiters [B.2, C.1, C.5, C.8,
Cil2, CH3 T 1K 3, K. 13, L.4, M.9, P.1], to the author's knowledge
there has been no modelling and analysis of metastability induced failure
rate of arbiters. However, the study of the metastability of primitive
digital circuits such as flip-flops, Schmitt triggers and inertial delays
[EIATRCHMCISNECIOTE L - 0 F. 2 H.3, H.4, K.3, L3, L2, M.3: M4, P.3,
R.2, U.1, V.l]:has received increased attention after confused beginning
[C.6]. In fact, integrated circuits manufacturers are becoming more aware
of the importance of the problem of metastable behaviour in digital system
design and the problem is addressed in recented data books [I.1, L.3].
Much of the recent literature on VLSI recognises the importance of this

phenomenon [G.3, M.7].

L

A number of papers [F.2, H.3, L.1, R.1] on the modelling of
metastability in flip-flops, synchronisers and other primitive elements
allude to the formulation of a model which is further developed by the
author for use in the analysis of more complex circuité containing the
primitive elements. In particular, the thesis appliés the model to the
analysis of the metastability performance of both batched and non batched
arbiters. The model developed in the thesis is called the aperture model.
In view of the fundamental nature of the metastability problem in digital
systems and in particular arbiters, the thesis also contains a broad
overview of metastability.

The lack of understanding of metastability [C.6, F.3, M.4, V¥.3]
motivated work directed towards a rigorous examination of the fundamentals
of the problem. A significant step towards dispelling any myths, for
example, that a perfect metastable-free arbiter with asynchronous request
inputs can be physically realised, was made with the work of Hurtado and
Marino [H.4, M.3, M.‘l].s However in the theory developed, the set of
functions over whigh the system inputs can range necessarily contain
functions which are unlikely to be found in practical circuits, such as
those with discontinuities or unbounded derivatives. It was not clear to
what extend the unavoidability was related to the inclusion of these
possibly impractical input functions. In the thesis, it is shown that the
inclusion of these unrealistic input functions is not necessary in order
to establish the unavoidability of metastability. Examples of sets of
more realistic input functions are given that necessarily contain input
functions that give rise to metastability in digital circuits with a
"decision” mechanism.

Once accepted as unavoidable, the design problem is to reduce the

probability of metastability to an acceptable level, and a great deal of

= 1.5 =

attention has been given to this problem [A.1, C.4, C.6, C.7, C.8, C.9,
CH ARSI cNG i E 1 o F.2, F.4, K.3, M.3, .4, M.9, P.3, R.1, 8.6, 8.7,
V.1]. Although experimental data has been produced [C.7, C.16, R.1, R.2],
the quantitative evaluation of the schemes developed has received less
attention [H.3, L.5, R.l]; The performance of various schemes suggested
in the literature are examined from an analytical viewpoint in the thesis.

Redundancy and masking techniques are well established as a means
for improving system reliability when physical component failures and
transient noise errors are considered [K.1, K.2, M.6, M.§, W.1, W.2, W.4].
It is shown in the thesis that these same techniques are ineffective for
improving the reliability when metastable failure is considered. This
result establishes a fundamental difference in nature between meta-

stability and permanent or transient hardware component failure.

1.2 CONTRIBUTIONS OF THE THESIS

The main contributions of the thesis are as follows:

(i) The thesis identifies a new class of arbiters referred to as batched
arbiters and develops models for the analysis of arbiters which
incorporate the batching mechanism. The thesis also describes a
mechanism for generating new arbitration disciplines by combining
the batching mechanism with primary disciplines., such as fixed

priority and round robin.

(ii) Models for arbiters which account for many practical arbiter circuit
parameters not previously considered in the literature are
developed. The modelling has been carried out for both asynchronous

and clocked arbiters.

- 1.6 -

(iii) New analytical tools for the analysis of the service and utilisation

(iv)

(v)

performance of arbiters are developed. The amalysis techniques are
based on imbedded Markov chains. Arbitrary service time
distributions are permitted by the analysis techniques developed.
The analysis enables limiting results under light and heavy request
loadings to be derived for performance measures. Futhermore, the
techniques are applied to both asynchronous and clocked arbiters and

a variety of service disciplines.

The thesis examines a number of {fundamental issues concerning
metastability in digital systems and specifically its relevance to
the reliability performance of arbiters:

(a) A general model for analysing metastable reliability
performance of digital circuits, called the aperture model,
is developed.

(b) A quantitative evaluation of échemes désigned for improving
metastable reliability in synchronisers is presented.

(c) The thesis extends previous results on the unavoidability of
metastability in digital systems to enable direct application
of the results circuits with practical digital input signals.

(d) It is shown that redundancy and masking techniques are
ineffective in improving the metastable reliability of

synchronisers.

An important contribution of the thesis is the analysis of the
performance of arbiters from the viewpoint of metastability induced
failure. The analysis techniques are applied to both asynchronous

and clocked arbiters The impact of certain internal arbiter

= L o

functions, such as the request resetting mechanism in clocked

arbiters, is evaluated.

1.3 OUTLINE OF THE THESIS

The thesis is organised as follows:

In Chapter 2, arbiters and their performance measures are introduced
and defined. An overview of the relevant literature is presented in order
to put the work presented in the thesis in perspective. This chapter
provides a basis and framework for the discussion and analysis of arbiters
presented in later chapters. Various service disciplines and the concept
of batched disciplines are introduced and practical circuit
implementations given.

Metastable behaviour is a problem encountered in many digital
circuits with asynchronous inputs. Chapter 3 introduces metastability and
presents an overview of developments in the area. Original results on the
unavoidability of metastable behaviour are presented. The efficacy of
masking and redundancy techniques applied to synchronisers is examined.
In addition, the aperture model for analysing metastable behaviour of
general digital circuits is developed. Various techniques suggested for
improving the metastable reliability of synchronisers are analysed using
the aperture model.

In Chapter 4, approaches for analysing the service and utilisation
performance arbiters are reviewed and a new technique based on imbedded
Markov chain is introduced. The relative merits of the approaches are
examined. The arbiter models which form the basis of the analysis are
developed in this chapter.

In Chapter 5, the analysis approach of imbedded Markov chains is

applied to fixed priority batched arbiters and the transition probability

- 1.8 —

matrix of the Markov chain is derived. The transition matrix is shown to
be irreducible and primitive. Performance measures are derived from the
unique limiting probabilities and service and metastable reliability
performance measures are considered. Analytical limiting results for the
light and heavy request loading are derived. Finally, numerical results
obtained from the Markov analysis are presented and compared to
Monte-Carlo simulation results.

Chapter 6 has the same structure as Chapter 5. The chapter contains
corresponding analysis and results for non batched fixed priority
arbiters.

In Chapter 7, clocked fixed priority batched arbiter configurations
are examined. Three different resetting strategies for an arbiter design
are considered. Models for analysing their performance are developed. As
in Chapters 5 and 6, an approach based on imbedded Markov chains is
employed to analyse the performance of the thrée configurations.
Finally, numerical results obtained from the Markov analysis are presented
and compared to Monte-Carlo simulation results.

Chapter 8 contains a selection of results comparing the performance
of various batched and non batched arbitration disciplines which have not
been amenable to analytical approaches. The numerical results presented
are obtained by Monte-Carlo simulation techniques.

Finally, Chapter 9 contains conclusions of the thesis and directions

of future research.

- 2.1 -

CHAPTER 2

ARBITERS

2.1 INTRODUCTION

The aim of this chapter is to introduce and motivate the study of
arbiters conducted in this thesis and also to provide an overview of the
relevant literature. Furthermore, it provides a framework and basis for
the discussion and analysis presented in subsequent chapters, and
introduces the various arbitration disciplines together with terminology,
notation, and implementations. Areas of interest in relation to arbiter
performance are discussed. In particular, service performance and
reliability performance are distinguished and defined.

The organisation of this chapter is as follows: In Section 2.2, an
ideal arbiter is defined and input/ouput constraints are presented.
Section 2.3 briefly gives examples of applications of arbiters in systems,
to provide some practical motivation for a study of arbiters. In Section
2.4, different disciplines employed in arbitration circuits are introduced
and example implementations are described. Various classifications are
also defined in this section, such as centralised/decentralised., clocked/
non clocked, and batched/non batched. In Section 2.5, correctness proving
of arbitration circuits is discussed and an example is given of an
"incorrect” arbiter to motivate the discussion. After functional
correctness of an arbitration circuit has been established, the
performance of a model of its behaviour in response to requests can be
evaluated. Section 2.6 qualitatively introduces performance measures used
in the thesis and discusses their practical meaning. Section 2.7

discusses aspects of the reliability performance of arbiters, dividing

- 2.9 -

reliability into hardware related failures and metastable behaviour
induced failures. The final section summarises the chapter and presents

conclusions.

2.2 DEFINITION OF AN IDEAI. ARBITER

Before proceeding with the definition of an arbiter, a few terms are
introduced: A requester is an autonomous source of requests for exclusive
access to a shared common resource. The shared resource cannot be
accessed by multiple requesters simultaneously, but must be allocated to
one requester at a time. The allocation of the resource in response to a
request can also be referred to as servicing of the request, granting of
the resource or acknowledging the request. An important example of a
shared resource in a computer system, particularly multiprocessor systems,
is a shared bus [B.6, C.11, E.2, H.2, K.14, M.1, M.5, T.3, T.4, W.5].
Obviously, information can only be transferred when only one user drives
the bus at a time and consequently bus access sequencing must oceur among
conflicting users. Additional, more detailed examples can be found in the
next section.

In order that mutually exclusive access to the resource be ensured,
requests must be arbitrated to determine which request is given access.
Other pending requests must then wait. A requester is signalled that it
has been given access to the resource by an acknowledge signal [P.4] (also
referred to as a grant signal elsewhere [C.17]). The function of an
arbiter is to control the acknowledge signals, as indicated in the
following definition.

An arbiter is a digital circuit that processes a set of requests to
generate one and only one acknowledge corresponding to an asserted

request. The arbiter drops an acknowledge only after the corresponding

R =

request is dropped. Apart from constraints on the arbiter outputs,
constraints are imposed on the arbiter inputs, namely requesters [P.4,
C.17]. A requester only requests when its acknowledge is not asserted and
only drops a request after it receives an acknowledge. Once a request is
lodged, the requester is committed to holding the request until it is
serviced by the arbiter. Also after dropping its request, a requester
must wait until the arbiter has responded by dropping the corresponding
acknowledge signal before the reguester can proceed to lodge another
request. A fully interlocked handshaking protoéol [T.3] is established by
these constraints.

Figure 2.1 shows an arbiter with k request inputs, denoted Req 1,
Req 2, .., Req k, and the corresponding k acknowledge outputs, denoted
Ack 1, Ack 2, .., Ack k. Requester h lodges a request by asserting Req h,
as shown in Figure 2.2, and the arbiter responds later by asserting Ack h
to grant the resource to requester h. When requester h has completed
accessing the resource, it drops[Req h and waits for Ack h to drop before

p

it can request again. The constraints stated above for the arbiter

circuit and requesters are summarised concisely below:

TRegh = Ackh=0 (2.1)
TAckh = Reqh-=1 (2.2)
lReqh = Ackh-=1 (2.3)
lAckh == Reqh=0 (2.4)

- 2.4 —

Ack h = forall i, i #h Ack i =0 (2.5)

1l
—

= there exists i, Ack i =1 (2.6)

n
s

Reg h

where == denotes implication,] denotes a O-1 transition and ! a 1-0
transition. The first four constraints (2.1-4) correspond to the arrows
in Figure 2.2 labelled from (1) to (4} respectively and have already been
discussed. The constraint (2.5) states that only one Ack output is
asserted at a time, whilst (2.6) states that if a request is pending then
Fhere is an Ack asserted. In a non ideal arbiter a delay occurs between
the assertion of a request and assertion of an acknowledge but is ignored
here in the ideal case. HNote that (2.2), (2.4}, {(2.5) and (2.6) are

output or functional constraints (i.e. constrain the Ack outputs).

FIGURE 2.1 General Arbiter.

- 2.8 =

I

il | o

“Reqg h 9 CL
(1) [(2) (3) |

7

|
[
|
|

Ack h O

l
|
1
1
idle : request | servicing relec:singl
l

resource |

pending request
!

FIGURE 2.2 Request Acknowledge Signal Protocol.

Constraints (2.1) and (2.3) are input or domain constraints (i.e.
constrain request inputs). However, no restriction is placed on the
timing of the assertion of a request when Ack = 0. This allows requests
to occur asynchronously in time. In particular, requests can occur
arbitrarily close to one another. The ideal arbiter resolves requests
irrespective of their relative timing. As will be seen in Chapter 3, this
is indeed an ideal situation since physically realisable arbiters cannot
achieve perfect request resolution within a bounded time under all Tequest

timings due to the possibility of metastable behaviour.

2.3 -APPLICATIONS OF ARBITERS IN SYSTEMS

Arbiters form a basic building block of computer systéms, in
particular multiprocessing systems [B.1, C.2, C.5, 1.2, L.4, M.1, M.9,
P4, 8.1, T3] With the advent of cheaper and readily available

processors, multiprocessor systems became an attractive alternative to

2.6 =

achieve goals ranging from high processing power to high reliability [B.6,
E.2]. New interconnection architectures for processors, memory and I/0
devices involve a degree of sharing of the basic hardware resources in a
system, such as bus systems [T.3], common memory [C.3, M.5], dedicated
arithmetic and vector processors, dynamic memory with automatic refresh
control [R.1], I/0 interfaces and processors themselves [C.2]. In order
to control the access to shared resources, fast arbitration circuits are
employed. Because speed is critical in the allocation of hardware
resources such as buses, memofies and I/0 devices, arbiters are
implemented as dedicated hardware. The functional level of allocation of
these resources is more primitive than software operations performed in
the kernel of an operating system and hence it is not efficient to employ
software resolution of contention. Indeed, implementations of kernels
assume implicitly that arbitration exists, for example, in dual port or
shared memory, in order that higher levei synchronisation mechanisms can
be built up, such as semaphores [H.1].

In this section two applications of arbiters are described:
allocation of buses; and interrupt distribution. Detail is kept to a

minimum and only basic details of the structures are described.

2.3.1 Bus Arbitration

Much of the literature on arbiters concentrates on bus arbitration
[B.1, F.1, M.1, T.3]. Buses provide a unified modular and well ordered
interconnection structure for a system. The advantages of shared bus
systems are widely recognised and a detailed discussion of bussing
structures can be found in [C.11, T.3].

A general structure for a single shared bus with arbitration is

shown in Figure 2.3. Request and acknowledge lines are incorporated in

the bus itself.

all request lines and acknowledge lines must fan into and out from the

arbiter respectively.

schemes will be discussed that provide a more modular and reliable

=~ 2 =

In the next

The arbiter shown in Figure 2.3 is centralised, meaning

section decentralised arbitration

structure.
SYSTEM BUS
ARBITER CPU CPU MEMORY 1/0
FIGURE 2.3 Centralised Bus Arbiter.
bus switch/arbiter

SYSTEM - :5,;;_{ A
V7

BUS ¢ _ @/&//

BUS 2 . _ 7

SYSTEM . 7
D

BUS 1 _ .

Module 1 Module 2 o Module k

FIGURE 2.4 Multiple Shared Bus System.

- 2.8 -

A more general situation of a multiple bus system is shown in
Figure 2.4. Examples of multiple shared bus systems are POLYBUS [M.1,
M.2]., C.mmp [W.5], Pluribus [K.2] and iAPX432 [T.4]. To obtain a
communication path between a slave module Ms and a master module Mm ,Mm
must obtain access to module buses s and m and also to any system bus.
This can be achieved using 3 types of arbiters:

(a) Module Bus Arbiter (MBA) - resolves requests for the module
bus from devices within thel module and external modules
communicating with the module.

(b) System Bus Arbiter (SBA) - Each system bus has its own system
bus arbiter which resolves requests from modules for the bus.

(c) Multiple Bus Available Arbiter (MBAA) - This arbiter is
associated with each module. Its function is to select one
qf possibly many system buses that acknowledge the module's
request for a system bus, and reset the remaining system bus
requests from its module.

The interconnect structure for arbiters SBA and MBAA is shown in Figure
2.5 for one module and many system buses. A module reguests a system bus
by asserting Req of ‘the MBAA, in Figure 2.5, resulting in the MBAA
asserting all Bus Req signals to the SBA's. The SBA’'s respond by
asserting Bus Avail signals when their corresponding system bus is free.
The MBAA selects a unique available system bus by arbitrating the Bus
Avail signals and asserting one -Bus Ack. All other corresponding Bus Regq

signals are reset by the MBAA.

SBAZ
Bus £ Reg T
Bus E@__ Bus £ Avail
Ack
o o
M 0 (o]
B SBA2
A Bus 2 Req 1
Bus 2 A _Bus 2 Avail
Ack
SBAI
Bus 1 Req T
Bus 1&__ {Bus 1 Avail
Ack

Req

FIGURE 2.5 Multiple System Bus Arbitration

(One module circuit only).

Note that a Bus Req h can be reset before Bus Avail h is asserted in
an SBA and Bus Avail h can drop before Bus Ack h is asserted in an MBAA.
This violates the signal protocol described in the previous section,
namely a request must be held until the corresponding Ack is asserted.
The reqﬁest protocol can be preserved by delaying resetting of Bus Req h
until Bus Avail h and Bus Ack h are both asserted, but thisr incurs
unnecessary delay and holding of buses. Another solution is to carefully

design the arbiters to tolerate resetting of unserviced requests.

- 2.10 -

2.3.2 Interrupt Distribution

Interrupts allow processors to respond to asynchronous events
without continuously checking event status (busy waiting). An interrupt
source requires mutually exclusive access to the processor, and
consequently multiple interrupts must be arbitrated. The arbitration is

performed by an interrupt controller [I.3] as shown in Figure 2.6.

Int 1 o
IS 1 [Ack 1
Int 2 Int P
IS 2 | Ack 2 . R
€ Inta
¢ 0
C

ST a™Adm3 = -

Int k
IS k | Ack k~

AmrroAa3I=200

Interrupt Vector Bus

IS=Interrupt Source

FIGURE 2.6 Interrupt Controller For Single Processor.

The interrupt controller has inputs Int 1, Int 2, .. , Int k from k
Interrupt Sources (IS) and corresponding acknowledge outputs Ack 1, Ack 2,
. Ack k to indicate to the IS that its interrupt vector should be
placed on the Interrupt Vector Bus (IVB). The controller interrupts the
processor via the Int line and the processor responds when ready to accept
an interrupt by asserting Inta. The controller forms Int as the OR
function of all Int i, i=1, .. , k and conditions the Ack i outputs on
Inta from the processor.
The case of a single Interrupt Acceptor (IA), for example the
processor in the previous example, can be generalised to multiple IA's and

multiple IS's [C.2] as shown in Figure 2.7.

- 2,11 —

source aC‘.CEptOI'
Int 1 ‘ " % Int 1
IS 1 [Ack 1 - . Rdy 1 |IA 1
¢ ” 2
Int 2 Int 2
IS 1 [Ack 2 5 | IHE .| B Rdy 2 |IA 2
< Inta <
I I
0 T T 9]
o E E 0
Int k R R Int &
IS1 | Ack k Rdy £ 7|IA 1

Interrupt Vector Bus

IS=Interrupt Source, IA=Interrupt Acceptor

FIGURE 2.7 Multiple Interrupt Distribution to Multiple

Interrupt Acceptors.

An IA signals it is primed to accept an interrupt by asserting the Ready
line. Should at least one interrupt be pending from an IS, the acceptor
arbiter selects one JA and assigns it to the IS selected by the source
arbiter. The interrupt vector is transferred via the IVB (which contains
the necessary control lines for transfer protocol). Since the IVB is tied
up for only the short time necessary to transfer an IS’'s identity, only
one IVB is employed. The interrupt distribution could be achieved using
multiple IVB's, similar to the multiple bus example previously, should the
IVB loading demand it.

From the previous application examples, it is clear that the
characteristics of arbiters are crucial for system overall performance.

The fundamental importance of the arbiter in the system architecture has

been highlighted.

- 2,02 -

2.4 ARBITRATION DISCIPLINES AND IMPLEMENTATIONS

Arbiters have been characterised so far in this chapter by their
mutually exclusive selection process on the pending requests. The
discipline and manner in which a request is selected from a number pending
is the subject of this section. Examples of impiementation structures are

also given.

2.4.1 General Model of Arbitration Disciplines

PENDING
REQUEST QUEUE ACCESS
Ri|R2|.. .[Rq T0
T //‘ /," RESOURCE
| . ///
g SERVICE
DISCIPLINE
INTER—
REQUEST
TIME

FIGURE 2.8 General Service Discipline Model.

The arbitration process can be viewed in a manner depicted in
Figure 2.8. Requests are placed on a queue of pending requests. The
position in the queue of a newly arriving request is determined by the
service discipline, and access to the resource is given to the request at

the head of the queue when the current service is completed. That is, the

discipline is non preemptive.

-2.13 -

The service discipline can be dependent on many parameters. For
example, the discipline can be a function of requester identity, previous
service and requesting history, the arrival times of requests, or even

pseudo random events such as the physical location of a rotating grant

signal [M.1].

2.4.2 First Come First Served (FCFS)

FCFS is the simplest and most natural discipline to define in terms
of the general model in Figure 2.8. Arriving requests are placed on the
end of the queue, and so requests are serviced in order of arrival.

It is shown in [S.1] that FCFS is the optimal service discipline in
the sense that it minimises the standard deviation of the waiting times of
all requests provided all requester statistics are identical. The proof
of this result is based on showing that the standard deviation increases
every time a request is swapped ahead in the queue with an earlier
arriving request.

Approximate FCFS can be implemented in a distributed [S.1] and
centralised [L.4, S.1] manner, but more hardware is necessary than most
other disciplines. In [S.1], the FCFS implementation is based on
assigning ticket numbers to requests, with the arbitration for the next
ticket number achieved through a secondary discipline. It is the speed of
the secondary arbitration tha£ determines how closely the overall
discipline approximates FCFS. In order that the ticket assignment scheme
is as fair as possible, the secondary arbitration must be unbiased and as
fair as possible. Sharma and Ahuja [S.1] study the effect on the overall
arbiter performance with various dynamic priority disciplines used for the

secondary arbitration. Dynamic priority disciplines are discussed in

-2.14 -

Section 2.4.4. The ticket assignment scheme effectively shifts the basic
arbitration process to the secondary arbiter and, thus, the approximate
FCFS arbiter relies on the fast operation of a simpler arbitration policy.
Hence, the study of simple policies that are amenable to fast
implementatioﬁ is of importance to FCFS arbiter design.

Another approximate implementation of FCFS [L.4] is a centralised
clocked scheme. Requests are synchronised to a clock and then resolved
within a request priority resolution module which can be programmed to
implement FCFS. The order of arrival of requests after synchronisation is
stored using k(k-1) R-S flip-flops, where k is the number of requesters.
When two or more requests arrive within the same clock period they are
ordered using differing delays (labelled tss in [L.4]) in each
synchronised request line. The fixed delays effectively implement a fixed

priority secondary arbitration policy, resulting in =a biased total

arbitration scheme.

2.4.3 Fixed Prioritv Arbitration Discipline

Each requester is assigned a fixed unique identity from 1 to k
where k is the number of requesters. It is assumed that requester h has
priority over h+l (h=1, ..,k-1) and so requester 1 has the highest
priority, although sometimes the opposite convention is adopted.

The arbitration discipline is to service the highest priority
pending request. In Figure 2.8, this corresponds to always inserting.an
arriving request in the queue to maintain R1>R2>..>Rq. With this
priority structure, persistent high priority requests can lock out low
priority requests. This is a well known problem with fixed priority
arbiters [B.1] but they still find wide application [B.3, I.2, T.3].
Systems are often composed of greatly different requester characteristics

and their treatment is often suited to a priority structure such as is

- 2.15 -

Req 1 »D @

Req 2»D Q}—

Req k>D Qf—

[D___

¢ J e
E [| D I%;, g
N E A L
C || C ' 9! i
® O D K e
D D e
E E °
R R J .
- KJ\ >
| |-

Ack 1
Ack 2

Ack k
CLOCK

CLOCK | l

T
~—]

T
==

Ny

\

———]

Req 2 ——— Q

@1

@2

Ack 1

\

" Ack 2

FIGURE 2.9 Centralised Clocked Fixed Priority Arbiter.

- 2.16 -

present in the PDP-11 based systems. Time critieal interrupts, such as
from USARTS on a high baud data link, should take priority over a non
critical slow interrupt, such as a keyboard.

Figure 2.9 shows an implementation of a centralised clocked fixed
priority arbiter. The arbiter can be divided into three parts:

(1) The request synchroniser consisting of clocked D-type

flip—flops;

(ii) Priority resolution circuit of encoder-decoder combination

which selects the highest priority synchronised request;

(iii) The output latch/non preemption circuit - once an Ack output

is asserted only 1 = 0 Ack changes can occur. This

prevents a higher priority request overriding the service of

a lower priority request already in progress.
The arbiter in Figure 2.9 is centralised and consequently is difficult to
expand to incorporate more requesters beyond a preset initial limit
imposed by the designer. The circuit utilises fast parallel priority
resolution circuitry in the encoder exploiting the centralised nature of
Req inputs. This has the disadvantage of requiring many Req and Ack lines
running to the requesters throughout the system.

In order to overcome the disadvantages of a centralised arbiter, a
decentralised version can be employed. The decentralised example shown in
Figure 2.10 is an asynchronous or non clocked digital circuit. Priority
resolution is performed using a Daisy Chain [B.3, T.3] which threads
through each arbiter module. When a module receives an asserted Daisy In
(DI) signal it passes it on to Daisy Out (DO) if the module does not
require the resource. If the module has a stored request it blocks the

daisy chain. Thus, the daisy propagates from the highest priority module

- 2.17 -

to the closest module with a request latched. The wired-or lines Req Pend

and Busy control the resetting of the daisy chain after a service and the

prevention of preemption by a high priority request during the servicing

of a low priority request. The circuit details of a module are presented

in Section 4.3.1.

+Vee
L7 L | 2
T Busy 0 0
| A0 | 2= | 20
F 3 F 3 F 3 Y F a
y A y y A
Reg 1 — Req 2 —* Reg k —
Module 1 Module 2|°* ° Module k
Ack 1 < Ack 2 < Ack k <
DI 1 DO 1 DI 2 DO 2 DI k DO k
Nan —’_ _____
Head of Daisy _ Daisy Chain
FIGURE 2.10 Decentralised Unclocked Daisy Chained Fixed Priority

Arbiter — Module Interconmections.

The decentralised arbiter has several important features:

(1)

(i1)

(iii)

It is modular and can be easily expanded by adding further
modules. A limit to expansion may be imposed by timing
constraints depending on tﬁe implementation.

The number of global lines is small.

The opriority 1is a function of physical positions of
requesters and resolution can be slow due to the serial

nature of the daisy chain. Parallel resolution on a

- 2.18 -

distributed basis is however possible as used in the
synchronous backplane interconnect of the VAX 11/780 [B.3]
and IEEE Future Bus [T.1]. These schemes require additional
interconnections to distribute priority information.
The circuitry of Figure 2.10 does not rely on a clock for its operation.
As will be di;cussed in more detail in Chapter 7, this has the advantages
of greater speed and less synchronisation events within the arbiter. Also
implementing fault tolerance is simpler for asynchronous circuits.
However, extra care in design is needed to avoid races, hazards [U.1] and
to satisfy all.timing constraints required by components (some of which
are impossible to satisfy due to the asynchronous nature of requests, but
this problem also occurs in clocked arbiters as is discussed in Chapters 3

and 7).

2.4.4 Dynamic Priority Arbitration Disciplines

The fixed priority arbiter of the previous section treats requests
in an unfair or asymmetrical manner which can be detrimental to the
performance in some applications where no preference for particular
requesters can be justified. Dynamic allocation of priorities to
requesters can overcome this probiem if the allocation is symmetric with
respect to Trequesters. After the arbitration decision to service a
request is completed, priorities are permuted in a manner that favours no
requester on an average basis when requesters are statistically identical.
Algorithms discussed in this section are round robin, next robin and least

-recently used (LRU).
Let p_: {1.2, ...k} — {1.2, ..,k} be a permutation mapping from

n

the set of requesters to the set of priorities on which the arbitration of

- 2.19 -

the nth service is based. If pn(h) < pn(i) , requester h has priority

over requester i for the nth service. Each dynamic allocation algorithm

is characterised by the mapping P, - The permutation mapping is also

called the discipline state of the dynamic priority scheme. All the

dynamic priority disciplines discussed here have Markovian discipline
. th th

states since the n state depends only on the (n-1) and

. . : th .
request/service behaviour during the (n-1) service.

Round robin is defined for n > 1 by

P, (h-1) ., 1<h<k
p,(h) =
Py (k) +h=1
and for n = 1 (2.7)
p,(h) =h ., 1<h<k

The priority rotates every service, independently of request behaviour.
This scheme is symmetric with respect to all requesters énd hence favours
none.

Next robin [B.1, B.4, I.3] is dependent on the requester serviced at

time n-1, denoted s. The scheme is defined as follows. For n>l

h-s+k , 1 {h<s
P,(h) =
h-s , s <h<k
and for n = 1 (2.8)
pl(h) = h .1 {h<k

The last requester serviced is assigned the lowest priority and the

- 2.20 -

remaining requesters follow in order modulo k. Next robin can be
implemented in a decentralised form [B.4] as shown in Figure 2.11. The
last module to assert its Ack signal becomes the head of the daisy chain
and hence lowest priority. That is, the daisy starts propagating from the
head module, giving all other modules the opportunity to block the daisy

chain before the head module receives an asserted Daisy In.

+Vcce
o Regq o P
| 3 | g £l
P Busy 0 =
| A [0 LA
a ¥ 3 A & F
Req 1 —* Req 2 — Req k —
Module 1 Module 2° =° Module k
Ack 1 <— Ack 2 < Ack k -
DI 1 DO 1 D];T DO 2 DI k DO k
e e

LOOPED DAISY CHAIN

<t

FIGURE 2.11 Daisy Chain Implementation of Next Robin.

The LRU dynamic priority algorithm assigns priorities in order of
least recent accesses to the resource, with highest priority given to the
requester not accessing the resource for the longest time. After the
servicing of requester Rs’ priorities are reassigned as follows [B.1]

(refer alsc to Table 2.1):

- 2.21 -

forn> 1
k , h=R
s
pn(h) = Pn—l(h) ' pn—l(h) < pn—l(Rs)
p_;(B) -1 P >p _,(R)
and for n =1 (2.9)
pl(h) =h 1<{<h<k
PRIORITY (n—l)th SERVICE nth SERVICE
(RS serviced)
1 Rl Rl
2 R2 R2
= Rs—l Rs—l
s Rs Rs+1
s+1 s+1
k Rk RS
TABLE 2.1 LRU Dynamic Priority Mapping

- 2.22 -

That is, Rs is assigned lowest priority, having most recently used the
resource, and requesters with previous priorities lower than Rs's previous
priority are upgraded in priority and those with higher priorities are
unchanged. The mapping is invertible and hence priorities remain unique.
After at most k-1 requesters receive services the priorities will
be in order of least recently used, independently of the initial
priorities. This can be seen as follows: If two requesters have been
serviced, their priorities will be in order of least recently used for the
following reasons: Whilst a requester is not serviced its relative
priority does not change with respect to other requesters not serviced.
In the time after the last of the two requesters is serviced, their
relative order of priorities does not change and so the last Tequester
serviced must have a lower priority than the ﬁther, because the last
requester serviced was allocated the lowest priority after being serviced.
Applying this to all pairs of serviced requesters gives the least recently
used priority scheme. At most one requester is not serviced at all, and
it must receive the highest priority because its priority can never be
lowered and all the other requesters were placed below it after servicing.
The LRU, and other dynamic priority schemes, can be implemented
centrally using sequential logic in place of the encoder—decoder in
Figure 2.9. A decentralised scheme using a daisy chain cannot be employed
for LRU because of the serial order of priorities changes dynamically,
however distributed parallel priority resolution such as employed in
FUTUREBUS and FASTBUS arbitration [T.1, T.2] along with sequential logic
for dynamic priority allocation within modules [F.1] presents a practical

alternative.

P23 -

2.4.5 Batched Disciplines

The concept of batched disciplines is essentially new and has not
been previously identified or defined in the literature to the author’s
knowledge. Some specific arbiter designs [C.1, C.2, C.5] have employed
disciplines classified as batched in this section.

Batched arbitration disciplines can be described in terms of the
general model in Figure 2.8 by placing a dummy request, called a batch
marker, at the end of the queue whenever a batch marker reaches the front
of the queue (i.e. is "serviced"). Initially, when no requests are
pending, a batch marker is placed at the end of the queue, and from then
on, the queue will always contain exactly one batch marker. The function
of a batch marker is to restrict the service discipline so that it acts
only on the queue after the batch marker. Reordering of the queue when a
new request arrives camnot then disadvantage or chaﬁge the ordering of
batched requests (i.e. those in front of the batch marker). In an ideal
batched arbiter, the service time of a batch marker is zero, however non
zero batch marker service times can be used to represent inter-batch time
durations of a more realistic arbiter model, as adopted in Chapter 4.

The batching concept can be implemented by a lock out mechanism on
requests occurring after a batching point (i.e. immediately after
"servicing” of the batch marker). When the next batching point occurs,
requests pending are stored within the arbiter for later servicing. These
stored requests are termed a batch of requests and correspond to those
requests ahead of the batch marker in the request queue of Figure 2.8.
Only batched requests are serviced, and the order of servicing within the
batch is a function of the particular batched discipline. A batching
point occurs a short time after a batch of requests has been serviced or

in the case of the arbiter idling (i.e. no requests pending), a short time

- 2.24 -

after the first request occurs. The batching concept was motivated by the
desire to prevent hogging of the shared resource by high priority
persistent requests in fixed priority arbiters.

Batched disciplines can be classified as either derived or
non derived A derived batched discipline is obtained by applying the
batching concept to any existing discipline. That is, the original
discipline is restricted so that requests cannot be reordered across the
batch marker. Batched requests only are serviced in the order determined
by the original discipline over which batching is applied, and those
requests that are not yet batched are treated as though they are not yet
present. It is interesting to note that FCFS and batched FCFS are the
same discipline.

It is possible to define non derived batched disciplines which are
not defined as batched versions of previous disciplines. A non derived
batched discipline still has the property that requests occufring after a
batching point are locked out until all the batched requests have been
serviced. The order of servicing of batched requests in a non derived
batched discipline may be a function of the position of the batch marker.
Two examples of non derived disciplines are non derived batched forward
round robin [C.5] and non derived batched reverse round robin. These are
dynamic priority batched disciplines which only reassign priorities when a
batching point occurs (i.e. when the batch marker réaches the front of the
request queue), as distinct from non batched dynamic priority disciplines
which reassign priorities every service. Non derived batched forward
round robin is defined to reassign priorities by rotating them in a
forward direction after every batch with the same permutation mapping as
round robin in (2.7). Non derived batched reverse round robin rotates

pricrities in the reverse direction at the end of servicing a batch of

- 2.25 -

requests by assigning requester 2’s previous priority to requester 1's
priority and so on as in the following definition of pbn(h). the priority

th
of requester h during servicing of the n™ batch. For n > 1

pb__;(h+l) . 1<h <kl
pb_(h) =
gl o
pb__,(1) » h =k
and for n = 1 (2-10)
pb (h) = h ,1<h <k

When labellingrbatcﬁed disciplines they will be assumed to be derived
disciplines unless otherwise stated.

An example of a decentralised batched fixed priority arbiter is
showvn in Figure 2.12. A daisy chain implements the fixed priority
resolution, with the module nearest to the head of the chain, module 1,
receiving highest priority. The common line forms the wired-or function
of latched requests (i.e. those that have been batched) and wheﬁ asserted
locks out new requests from being latched. After the servicing of a batch
of requests, the common line resets and each module latches pending
requests and resets the daisy chain. Once the common line is asserted due
to a latched request, the daisy chain is enabled and the batch of requests
is serviced in order of the modules along the daisy chain. More details

can be found in Section 4.3.1.

- 2.26 -

+Vece

: Common line

| T o~ | I

[R [2 L7

A A A
Req 1 —* Req 2 = Req k —

Module 2|°® =° Module k
Ack 1 <] Module T 1 2« Ack Kk
DI 1 DO 1 Dl 2] DO 2 DI k | DO k
Head of Daisy Daisy chain

FIGURE 2.12 A Decentralised Batched Fixed Priority Arbiter.

The Busy line in the non batched version of Figure 2.10 is unnecesary in
the batched version of Figure 2.12 since the common line is sufficient to
distinguish batches. Thus, it can be seen that in this basic example of a
fixed priority arbiter, the batching implementation is in fact simpler
that the non batched version. In any general distributed arbiter,
batching can be incorporated using a distributed wired-or line, which is
asserted if a request has been latched, and request latches enabled when
the wired-or line is unasserted. For example, the non derived forward
[C.5] and reverse round robin batched disciplines can be implemented using
a priority daisy chain connected in a loop, a wired-or common line and
another daisy chain to rotate the priority daisy chain head at the end of
servicing a batch of requests.

In the proof [S.1] that FCFS minimises the standard deviation of
waiting times (when service times are constant and request statistics are

identical), it 1is shown that the standard deviation of waiting times

- 2.27 -

increases every time a request is swapped ahead in the queue with an
earlier arriving request. One may try to extend this result to a
comparison between batching and non batching versions of the same
discipline, argueing that the batch marker acts to reduce the number of
swaps performed by the discipline and hence the standard deviation. This
is true in most cases, but not all, as borne out by simulation results in
Chapter 8. The reason being that, given the same request stream, the
queue order and discipline state seen by an incoming request may be
different, and also the discipline changes the arrival process in terms of
the distribution of request identities (but not queue length). Thus
comparison can only be made between disciplines where one of them makes no

discrimination on the basis of requester identity (e.g. FCFS).

2.5 CORRECTNESS PROVING

Arbitration circuits require careful design because of the
asynchronous nature of their inputs and strict output requirements
outlined in Section 2.2. The difficulty lies in the possibility of inputs
changing while the circuit state has not yet recovered from a previous
input change. This difficulty in the design process can be alleviated by
synchronising the request inputs to a clock and then designing =a
synchronous circuit to arbitrate the resulting synchronous requests.
However, asynchronous circuits, where no internal clock synchronism is
present, have speed advantages over synchronous circuits irrespective of
any differences in metastable reliability which are discussed in
Chapter 7. Once a design, either synchronous or asynchronous, has been
formulated it needs to be tested for all possible input sequences and

device parameter variations before confidence can be placed in it.

-

\
N\ |
Cp

G @Q"!‘ - .88 -

i
‘ P
TU%;/ An example of a FCFS asynchronous arbiter design with three request

inputs is shown in Figure 2.13. The three R-S flip-flops, FF1, FF2 and
FF3, which are assumed to be set when both R and S are asserted, store the
arrival order of requests as follows: FF1 is reset if Req 2 arrives
before Req 1; FF2 is reset if Req 3 arrives before Req 1 ; FF3 is reset if
Req 3 arrives before Req 2. The circuit functions perfectly well when
request input changes are sufficiently separated to prevent marginal
triggerring of the flip-flops. Ignoring metastable behaviour, which is
discusssed in Chapter 3, two inputs changing together result in a valid
state transition when the appropriate flip—flop settles to either logic
state. However, a problem arises when all three inputs change together as
shown in the timing diagram of Figure 2.13. Since all three flip-flops
are marginally triggered by the attempt to decide on the request arrival
order, they could settle to any of the eight possible states, six of which
are valid and the remaining two are inconsistent. The inconsistent states
correspond to circular queue orderings (1-2-3-1 and 1-3-2-1, where =
denoteé(SQrfived before") and result in deadlock with no Ack asserted, An
example is shown in the timing diagram of Figure 2.13.

This example is quite simple in hindsight, but for a more complex
arbiter not all state transitions may be as easily understood. Additional
difficulties arise in verifying that all device timing constraints are
met, such as minimmum pulse widths on flip—-flops. Some conéigﬁnts cannot
be met as-discussed with regard to metastable behaviour in Chapter 3.
Correctness proving, similar to that employed in some computer software,
can be applied to hardware design. Axioms can be formulated for devices,
input protocols and connections, with theorems developed and proved

rigorously within a first order predicate calculus framework. This

L

Req 1

Req

Req

Req
Req
Reg
Q1
Q2
Q3

Ack
Ack
Ack

ol =R

Y

Ack 1

1

Ack 2

-
0 T NiPp—e
N
[]

11 ¢Y YOI
Y 9k

A
5
FF3 ¢
R — Ack 3
i [7
| l
| I
| L
| | VL. Req 1 before Req 2
| | UV Reg 3 before Req 1
_ | | YV Req 2 before Req 3
| l
7 No
Ack
] asserted
FIGURE 2.13 An Example of a FCFS Three Input Arbiter.

- 2.30 -

approach is used in [B.2] to formally show equivalence of the arbiter,
synchroniser, latch and inertial delay. Naturally, in the development of
axioms, modelling assumptions are made for devices and interconnection
structures that may only be approximate or even erroneous. One may model
an arbiter, synchroniser, latch and inertial delay to be free of
metastable behaviour and acknowledge that the assumption has been made
[B.2]. Another example of simplified modelling that is often overlooked
in digital design is that of the wired-or open collector driven common
line [G.5]. To achieve a distributed OR function, open collector drivers
are connected to a distributed line which is pulled high at both ends by
resistors. It is often assumed that the line is low whenever at least one
open collector driver is active. This may not always be true, since when
a driver becomes inactive it redistributes the current in the line which
can cause transient glitches to be seen in the line [G.5].

The process of correctness proving can be extremely tedious to
perform by hand, and semi-automated theorem provers have been developed
[W.4, S.3, S.4] which are claimed to be a practical development tool,
especially in areas that require high reliability such as fault tolerant
computers. It is pointless designing a circuit to be extremely reliable
when the design itself cannot be verified to be correct in a rigorous
manner. From the author’'s own experience [K.8] and others [W.4], the
exercise of proving correctness can identify subtle design flaws that may
never be discovered by conventional hardware testing, and yet can cause
later problems which are possibly intermittent and difficult to trace.

Correctness proving is not pursued further in this thesis and the
interested reader is referred to specific work done by the author [K.8]

and others [W.4, B.2, S.3, S.4].

— 2,31 =

2.6 PERFORMANCE MEASURES

Once an arbiter design has been established to be functionally
correct, the behaviour of the arbiter can be predicted from a model based
on the functional description. By amalysing the model under certain
excitation assumptions, performance characteristics can be obtained. The
excitation of the arbiter is controlled by the request inputs. The Req h
input controls the length of the re—reéuest time (i.e. the time from Ack h
going low to Req h asserted high, labelled "idle” in Figure 2.2) and the
service time (i.e. the length of time both Req h and Ack h are high). The
performance of an arbiter is relative to the assumptions regarding the
re-request time and service time distributions for each requester.

Two aspects of arbiter performance are considered in this thesis:
service performance and reliability performance. These are qualitatively
introduced separately, with the discussion of reliability performance
deferred to Section 2.7. Precise mathematical definitions of the

performance measures are given in Chapters 5 and 6.

2.6.1 Service Performance

The service performance is based on the request to service response
of the arbiter. Service performance measured in terms of waiting times
are discussed with reference to times between transitions of the request
acknowledge protocol of Figure 2.2. Apart the re-request and service
times, which are controlled by the requester, the time durations of
transitions from (1) to (2) of Figure 2.2, called the waiting time, and
from (3) to (4), called the release time, are determined by the arbiter.

Performance measures can be derived from waiting times, such as:

- 2.32 -

(i) the mean waiting time over all requests, MWT ;

(ii) the mean waiting time for requester h, MWI(h) :

(iii) the standard deviation of waiting times STDW ;

(iv) the standard deviation of waiting times for requester h,

STDW(h) .

MWT is independent of the arbitration discipline provided all requesters
are statistically equivalent and the arbitration discipline is ideal in
the sense that no logic delays or decision times occur [B.1, S.1]. For an
ideal arbitration discipline, MWT is a measure of the contention between
requests or the request loading (i.e. the inverse of the mean re-request
time relative to the mean service time). MWT(h) allows comparisons
between requesters’ waiting times to be made and can indicate the degree
of fairness of a discipline, such as fixed priority. Disciplines which
treat requesters in a symmetric fashion, such as FCFS, round robin schemes
and LRU, have MWI(h)=MWT for all requesters h, provided each requester’s
request properties are the same. Two disciplines that treat requests
symmetrically may still be judged on their service performance. The
distribution of waiting times of the disciplines may be different, even
though their means -coincide. The probability of a requester waiting
longer than a certain time may be a useful measure of performance.
Ideally, the probability of waiting longer than any time would proviode a
good basis for comparison, amounting to obtaining the entire distribution
function of waiting .times. However, in practice this is difficult to
obtain, and a less accurate measure is often used, namely STDW [S.1, B.1].
When the spread of waiting times is considered a good measure of fairness,
STDW may be a measure of fairness in this sense, where a discipline with a
smaller STDW is considered fairer that one with a higher STDV.

Disciplines with a smaller STDW result in more constant waiting times for

- 2.33 -

requests, and tend to treat requests more evenly in that sense. The
notion of fairness is not, however, uniformly agreed upon. The LRU
discipline is considered the fairest in [F.1, K.13], even though LRU does
not minimise STDW [S.1]. In an analogous social situation to an arbiter,
"queﬁeing" (i.e. FCFS) is considered fairest when people are waiting for
service in a shop, and those people who "jump" the queue are frowned upon
as being unfair (a variant occurs when someone claims to require quick
service and is allowed to "fairly” receive service ahead of others). A
definition of fairness is avoided in this thesis due to its application
dependence and also because other more precisely understood measures, such
as those mentioned above, can be used instead.

Waiting time measures of performance are useful in. applications
sensitive to response times (e.g. interrupt distribution), but another
measure is useful in throughput applications, namely the proportion of
time allocated to requester h, PROP{h), which is the ratio of the sum of
service times of requester h to the total time elapsed. When the
requester properties, in particular service times, are the same for all
requesters, PROP(h) indicates the degree of preferential throughput
treatment given to requesters. The idle time of an arbiter. IDLE, is the
proportion of time not allocated to any requester and is a function of
request loading and efficiency of an arbiter. For a given request
excitation, a less efficient arbiter will have a higher IDLE than a more
efficient arbiter. Inefficiency can be due to slow arbitration logic
(e.g. a long release time)} or in the case of a time division multiplexed

arbiter [B.1], due to unfilled time slots.

- 2.34 -

2.7 RELIABILITY OF ARBITERS

Arbiters play a central and vital role in a digital system, being

responsible for resource allocation involving a large proportion of the

system. The malfunction of an arbiter can cause the entire system to

crash. Many possible malfunctions of an arbiter could result in system

wide failure or local module failure, some of which are listed below:

(1)

(i1)

(iii)

Multiple acknowledgements: more than one requester attempts
simul taneous access to a shared resource. For example, with
a system bus, information could be corrupted and bus drivers
damaged with electrical noise propagating through the system.
No acknowledgements: the arbiter does not allecate the
resource, despite the presence of pending requests. The
system may stop running if no reconfiguration occurs. In the
multiple bus arbitration example discussed in Section 2.3.1,
a system bus arbiter (SBA) not issueing any acknowledges
merely reduces the number of available system buses. The
system does not crash, but gracefully degrades in performance
[M.2]. Such a malfunction in a module bus arbiter would
result in at least the failure of the entire module.

A module of a distributed arbiter failing: The effect is
application dependent. Daisy chain arbiters are vulnerable
to the daisy chain malfunctioning due to a faulty module
{C.5]. Distributed dynamic priority resolution schemes
employed in recent buses [C.10, T.1, T.2] are vulnerable to
modules permanently driving priority lines, deadlocking the
arbiter. In distributed arbiters some module faults may only
affect the local module, and it is suggested [C.5, F.1, M.2]
that distributed arbiters offer greater reliability over

centralised designs.

= 2,35 ~

After a design has been shown to be functionally correct, two aspects of
unreliability can be considered. Unreliability due to hardware component
and intercomnection failure, and noise interference problems are
classified as hardware failures. Another type of failure can occur in
arbiters as a result of metastable behaviour within the arbiter and is
called metastable " failure. Metastable behaviour is due to storage
elements of a digital circuit, such as flip-flops, bistables, latches and
synchronisers, being marginally triggerred by critical request timing.
The marginal request timing causes a state of indecision within the
storage elements that lasts an indefinite time period. Metastable
behaviour is discussed in detail in Chapter 3 where it is established that
the problem is unavoidable in certain digital circuits with asynchronous
inputs, arbiters being an example.

Hardware failure reliability can be improved by established
techniques of hardware redundancy to mask faults and achieve a level of
fault tolerance [K.1, W.1, W.2, W.4]. For example, triple modular
redundancy (TMR) can be used to mask single hardware faults by employing
majority voting circuits on the outputs of three replicated modules
working in parallel with the same inputs. A faulty module output is
masked by the other twolfault free outputs that agree. The voter circuit
selects the majority output value, which is the correct one when at most
one faulty module exists. In order to be able to compare the outputs of
the wmodules, they must operate with some degree of synchronism with
Tespect to one another so that the correct outputs are available at the
same time. It is the synchronisation aspect that can present problems,

especially with independently clocked synchronous circuits as modules

[D.1].

- 2.36 -

The author has conducted an investigation into the possibility of
improving metastable reliability by applying redundancy and masking
techniques. Original work presented in Chapter 3 and in [1] shows that
the probability of metastable failure of a synchroniser cannot be improved
by redundancy and masking techniques that are effective against hardware
fajilure. This establishes a fundamental difference in nature between
hardware failure and metastable failure. It is in the area of metastable
failure that reliability performance of arbiters is analysed in this
thesis.

Metastable behaviour can occur in the request synchroniser in a
synchronous arbiter, for example in Figure 2.9. Should a request occur
near the sampling edge of the clock, the flip-flop synchronising the
request may enter a metastable state giving rise to malfunctions later in
the circuit if the metastable state lasts long enough. The situation is
different in an asynchronous arbiter, such as the decentralised batched
fixed priority arbiter shown in Figure 2.12. Metastable behaviour can be
induced during the latching of requests for a batch, should a request
occur just when further requests are in the process of being locked out at
the start of the servicing of a batch of requests. Within all arbiters,
sequential decision logic must be present to choose the next request to
service. Timing of requests can always occur that places the decision
logic in a state between allocating the resource to either of two
requesters. A more detailed description of the mechanisms involved is

presented in the next chapter.

- 2.37 -

2.8 CONCLUSIONS

This chapter has defined an arbiter and the associated
request/acknowledge protocol, with a view to isolating the essential
features of an arbiter to be discussed in this thesis. The fundamental
primitive nature of arbiters in digital systems has been demonstrated
through application examples and discussion. Various disciplines,
classifications and performance measures of arbiters have been introduced,
in order to set up the framework and perspective for later work in this
thesis. The service and reliability performance measurgf have been

/
discussed in a qualitative manner to motivate analyses p}%sued later.
Reliability performance has been divided into two fundamentally different

classes, hardware reliability and metastable reliablity, with the latter

being the subject of the next chapter.

- 3:1 =

CHAPTER 3

METASTABLE BEHAVIOUR L

3.1 INTRODUCTION

Many digital circuits with asynchronous inputs, such as arbiters,
are susceptible to failure even when all components are fault free. Fault
free circuits may fail due to metastable behaviour when the input timing
results in a marginal triggering of circuit state storage devices, such as
flip—-flops. 'Metastable behaviour of a digital circuit is a malfunction
corresponding to the circuit state remaining indefinitely between two
stable states, that can produce ambiguous state interpretation and other
erroneous effects within the circuit.

This chapter has two main objectives. One is to provide an overview
of the developments in the study of metastable behaviour relevant to
arbiter design and analysis, and the other is to present .original
contributions in the area by the author. Although the results are
directly relevant to arbiters, their applicability to digital circuits and
dynamic systems in general is naturally evident throughout the chapter.

The original contributions include reformulation and generalisation
of results on the unavoidability of metastable behaviour to enable
practical application of the results to a wide class of circuit input
functions [3].

Also original results are presented which show that redundancy and
masking techniques applied to synchroniser circuits (e.g. flip-flops,
latches and bistables) are ineffectual in improving the probability of
metastable failure [1]. This result is significant not only in realising
that employing redundéncy techniques to improve the metastable reliability

of synchronisers is fruitless, but also because it shows there is a

= 3.2 -

fundamental difference in characteristics between metastable reliability
and hardware reliability which can be improved by the same redundancy
techniques.

The organisation of the chapter is as follows. Specific examples of
metastable behaviour are given in Section 3.2, and Section 3.3 defines
metastable behaviour and describes its characteristics. Section 3.4
presents new results on the‘unavoidability of metastable behaviour and
applies them to arbiters. The importance of metastable behaviour in
systems 1is described in Section 3.5, where broad design issues are
discussed. In Section 3.6 modelling techniques for metastable behaviour
are described that are later employed in this thesis for analysing
metastable failure of arbiters. Techniques for improving metastable
reliability of arbiters, and indeed any digital circuit susceptible to
metastable behaviour, are described and analysed in Section 3.7, where
original analyses are carried out for a Schmitt trigger synchroniser and
redundant synchronisers. Finally, Section 3.8 summarises the conclusions

of the chapter.

3.2 EXAMPLES OF METASTABLE BEHAVIOUR

An arbiter is a digital circuit which clearly demonstrates the
metastable problems involved with processing asynchronous inputs.
Consider the case of a two input arbiter, impiemented as an asynchronous
circuit, as shown in Figure 3.1. The arbiter employs the two NAND gates
on the inputs to lock out the other request input when a request occurs.
The arrival order of requests is stored on the cross coupled NAND gate

flip—flop whose outputs are enabled a delayed time after a request occurs.

=WANIE=

Reg 1

Ack 1

Ack 2

Req 2

DELAY

FIGURE 3.1 An Asynchronous Two Input Arbiter.

Reqq] —mm8m8 b} ——————— i

Req 2 }}
7
lf

Aokt R et m——
’.

Ack 2

FIGURE 3.2 Timing Dependence of an Arbiter on Requests.

A Y

Consider the following two request scenarios as shown in Figure 3.2:

(i) Req 1 is asserted before Req 2, and Ack 1 shortly after.

(ii) Req 2 is asserted before Req 1, and Ack 2 shortly after.
Treating the time at which Req 2 is asserted as fixed, consider a
continuous variation in timing of Req 1 from scenario (i) to (ii). At
some point metastable behafiour will be induced corresponding to the
arbiter being unable to decide which Ack to assert. As shown in
Figure 3.3, when Req 1 and Req 2 are asserted approximately
simul taneously, runt pulses are produced within the circuit at R1 and R2.
The runt pulses, which are of insufficient width and separation to
guarantee a valid state change, may marginally trigger the flip~flop and
cause it to enter an unstable equilibrium state between the flip~flop
being set and reset. The duration of the unstable equilibrium is
unbounded, even in the presence of circuit noise. Ignoring noise effects
for now, one may suggest that the probability of the flip—flop exactly
reaching therunstable equilibrium point is zero and so no problem exists
in practice. However, the flip-flop need not be exéctly at the point of
unstable equilibrium for the flip-flop voltage to stay outside the voltage
ranges of the valid logic states for a period of time considerably longer
than a normal propagation delay. A range of triggering energies with non
zero probability can result in this anomalous flip—flop behaviour, known
as a metastable behaviour. It has been shown [C.16, V.1] that typical
levels of circuit noise have an insignificant effect on the probability
distribution of metastable behaviour duration.

The delay element in the arbiter circuit of Figure 3.1 delays the
Ack outputs from being asserted to allow a metastable settling time.

Since the duration of metastable behaviour is unbounded, there is still a

- 3.5 -

Req 1

Req 2
R1

R2

Metastable
Behaviour

it
V/

. o
N

A2 /
delay
I‘ - 4/“—
Ack 1 7
Ack 2 / ?

FIGURE 3.3 Arbiter Indecision and Metastable Behaviour.

- 3.6 -

possibility that the metastable behaviour of the internal flip-flop will
manifest itself at the output in the form of prolonged undefined or
oscillatory Ack signals, which may constitute failure of the arbiter.
Techniques for extending the delay duration until metastable behaviour has
settled aré discussed in Section 3.7.

The arbiter circuit shown in Figure 3.1 is implemented as an
asynchronous circuit. Arbiters which rely on a clock to sequence internal
state changes can also exhibit metastable behaviour. Usually synchronous
arbiters, for example the clocked fixed priority arbiter shown in
Figure 3.4, synchronise the request inputs to the clock before the
requests are utilised internally. The synchronisation is wusually
performed in a well defined interface circuit known as a synchroniser.
Once synchronised, the requests are assumed to change only soon after a
sampling clock edge, as shown in Figure 3.4. The synchronous circuit then
can be designed so that all internal device timing constraints are
satisfied [P.2]. For example, set-up and hold time constraints for a
D-type flip-flop within the synchronous circuit can be met provided the
clock period is sufficiently long.

Within a synchroniser metastable behaviour can occur when an
asynchronous request occurs near a clock edge and violates set-up and hold
time constraints of the synchroniser. When a synchroniser exhibits
metastable behaviour, the entire circuit could malfunction for two
reasons.

(i) The synchroniser output may no longer be a defined logic

value and could be interpreted differently by different

components within the synchronous circuit.

- 3.7 -

)
4

Req 1 »{D G ~ Ack 1

Reg 2D Q} Ack 2

. L{>._
ﬁ :J
Reqg k>4D Qf — KAQ Ack kK
|

7‘~'.L_ ~
)
¥

L]
AMoOO=Z M
AMoOOMmg

r

CLOCK

A

—— | | A

Q2

Ack 1 | i '
Ack 2 :

FIGURE 3.4 Clocked Fixed Priority Arbiter and Synchronous Requests.

- 3.8 -

(ii) The delay through the synchroniser can result in timing

constraints of the synchronous circuit being violated.

The fundamental problem in both asynchronous and synchronous
implementations of arbiters described above is that the arbiter must make
a decision based upon the timing of requests which is asynchronous with
respect to the other requests and possibly to an imposed clock reference.
One can usually identify devices within the arbiter whose correct
operation relies on constraining request timing. For example, the R-S
flip-flop in Figure 3.1 requires a minimum set/reset pulse separation in
order to function correctly. The D-type flip-flop synchroniser in
Figure 3.4 may malfunction when requests occur within an interval of time
around the sampling clock edge defined by the set-up and hold times.

Unger [U.1] has proposed a design technique for asynchronous
sequential switching circuits with unrestricted input changes which uses a
special state assignment and inertial delay elements in the state
branches. An ideal inertial delay only passes pulses greater than a set
width. All realiseable inertial delay elements require input constraints
in order to perform as required. The input constraints may be violated by
asynchronous inputs and metastable behaviour can occur, as demomstrated by

Marino in [M.3].

- 3.9 -

3.3 METASTABIE STATE — DEFINITION AND CHARACTERISTICS

In this section, the behaviour of a flip-flop under marginal
triggering conditions is considered. In Section 3.4 it is shown that
similar behaviour can be exhibited by any device with at least two stable
states and two input contingencies which drive the device to either stable
state.

A flip—flop is said to be marginally triggered when its output fails
to settle to a idgicélly defined state ("0" or "1") within its normal
maximum time delay. The normal maximumrtime delay is defined to be the
maximum delay required for the output to reach a logically defined state
under specified conditions on, for example, set-up and hold times. The
acceptable maximum delay is effectively determined by the components of a
logic family and the set-up and hold times appropriately specified.
Marginal triggering can occur in a D-type flip—flop when the data input
changes near the sampling clock edge, or in an R-S type flip—flop when
reset and set pulses are released almost simultaneously or contain runt
pulses.

Under marginal triggering conditions a flip-flop can enter a
metastable state [C.4, C.16] which is characterised by the flip-flop state
being in the vicinity of an unstable equilibrium state, with the flip—flop
output lingering or oscillating in between the O and 1 voltage levels.

Catt [C.4] demonstrated qualitatively that an unstable equilibrium
state exists in bistable flip-flops and can be induced by a critical.
marginal triggering of the flip-flop. Moreover, he claimed that a
metastable state in a flip-flop can continue indefinitely, even in the
presence of noise.

Various forms of output responses of marginally triggered flip—flops

determined experimentally are presented in [C.8], where it is claimed that

- 3.10 -

for small propagation time to rise time ratio logic families the output
hovers between 0 and 1 logic states before resolving the either logic
state, whilst logic families which have large propagation time to rise

time ratios exhibit oscillatory behaviour before resolving to either logic

state.

3.4 FUNDAMENTAL UNAVOIDABILITY OF METASTABLE BEHAVIOUR

A common approach to designing sequential circuits with asynchronous
inputs is to use a synchronous sequential circuit with a synchroniser as
an interface to handle the asynchronous inputs. The problem of designing
a perfect synchroniser (not subject to metastable behaviour) is equivalent
to the problem of designing perfect circuits with asynchronous inputs,
since each can be built from the other. Considerable attention has been
given to the problem of designing reliable synchronisers and estimating
their probability of failure due to metastable behaviour (also known as
synchronisation failure) [C.4, C.7, C.8, C.16, E.1, F.2, F.4, H.3, I.1,
K.3. K.5, K.6 L, L2, L:3: LB M3 M4 P33 Rl RZ2i 86 87,
V.1]. Attempts have been made to design a perfect synchroniser [C.6,
F.3]. However, careful examination reveals that the designs are indeed
subject to synchronisation failure, This is particularly evident in
analyses in [C.6].

The problem of metastable behaviour is generally considered to be
unavoidable in digital circuits which are dependent on the timing of
asynchronous signals. Attempts have been made to establish mathematically
[H.4, M.4] that metastable behaviour is a fundamentally wunavoidable
problem in a class of dynamic systems which includes digital systems that
process asynchronous signals. Marino [M.4] adopts a general mathematical

model for a digital system and then proves that metastable behaviour

-3.11 =

occurs for a range of inputs when the inputs include all functions with
bounded first derivatives that obey certain boundary conditions. That is,
he requires to be included in the input function space, functions with
unbounded or undefined second derivatives. Without these functions, his
theorem cannot guarantee that metastable behaviour will occur.

It is questionable that inputs found in practical circuits can be
considered to have unbounded or undefined second derivatives. Similar
comments apply to higher derivatives. Original work of the author [3] is
presented in this section to show that the inclusion of these possibly
unrealistic input functions is not necessary to establish that metastable
behaviour can occur. Practical input functions may have other properties
which could further limit the size of the set of input functions. For
example, - the bandwidth may be limited or certain relationships may hold
between components of the inputs. The question arises: What is a
property of a general set of input functions that leads to a range of
inputs causing metastable behaviour? It is shown in this section that the
topological property of connectivity of the set of input functions answers

. this question. Section 3.4.1 reviews a number of mathematical
preliminaries that are needed in later discussions. A theorem due to the
author is then presented that extends Marino's result [M.4] followed by

practical applications of the theorem to realistic input functions.

3.4.1 Mathematical Preliminaries

Central to the discussion is the definition of a connected set:

A set C is connected if and only if there do not exist open
sets D and E such that DNE=¢ , CNDz®d, CNE 0

and CCDUE, where O is the empty set.

- 3.12 -

To determine whether a set is open, a norm for the elements of the set can
be used. Since sets of functions are considered here, the norm of a

function needs to be defined. An example of a possible norm for bounded

functions is the lI-Il’'_ norm:
A +
Il u ll' = least upper bound {Nu(t) I : t E€R} (3.1)

where ll-ll is a norm on the range of u and R& is the set of non
negative real numbers .

From a norm definition, an open sphere Sr(u} centered at u can
be defined:

S () & {vex : v-ull' <r) (3.2)

where (X,li-ll') is the normed linear space in which the sphere lies.

A point x is called an interior point of a set A if there exists
r > 0, such that Sr(x) C A The set of all interior points of A is
called the interior of A , denoted int(A). The set A is said ta be
open if every point of A 1is an interior point of A.

A point X 1is called a boundary point of A if every open sphere
with centre x intersects both A and A' (=complement of A); that is,
for any r > O, Sr(x) NA#d and Sr(x) NA #@ The set of all
boundary points of A is denoted bnd(A).

Further mathematical background can be found in [S.5]. The notation
and definitions follow [M.4] with some of the more important concepts and

definitions reviewed here.

-'3.13 -

System State Space L

set of inputs

U = {u: RT-?- 1}

P
initial state o(p,u,t)
state at time t

FIGURE 3.5 System Definitions.

Referring to Figure 3.5, the system model is described in terms of a
state space 3 which is assumed to be a connected metric space. The set
of input functions. U , consists of piecewise continuous functions
u: R+ - I where I is a metric space called the input space. The system
behaviour is determined by the state transition function
¢: 3 x U x R' 5 3. The value ¢(p, u, t) represents the system state at
time t, with input function u, and initial state p. The function ¢

is assumed to be non anticipatory (¢ is dependent on u only up to time t)

e

= 314 -

and continuous with respect to the initial state and time. Also, ¢

satisfies
¢(p. u. t+s) = ¢[¢(p. u, t), u, s] (3.3)
for all p€X, uel and t, s€R+ where
ut(s) = u(t + s). ' (3.4)
This means that all past history before t that determines future
behaviour is stored in the system state ¢(p, u, t)., and also the system
is time invariant.
Suppose the set of states L, and set of input values C satisfy
LCZ2 and CCI . The set of idle input functions UC is defined:
A +
U = {u€U]|u(t)eC forall teR'} (3.5)

(1

L is inwvariant for input range C or C 1is the idle range for the

invariant set L if
forall t€R, p€L and uc€ U 3 ¢(p. u, t) €L (3.6)
The region of attraction (see Figure 3.6) of L for input u is

A(L, u) 4 {ple(p, u, t)€L for some t€R+} (3.7)

- 3.15 -

z

state space

input wuonly

7 B

FIGURE 3.6 Region of Attraction A(L,u).

System State Space I

RID (Ll st)

FIGURE 3.7 Region of Indecision RID(LO.LI,E).

- 3.16 -

The region of attraction of L for input range C is

A(L, ©) = [] AL, v (3.8)
uel

The set L is stable for input range C if L 1is invariant for C and
there exist r > 0 such that Sr(L) C A(L, C). Suppose that LO and
Ll are non empty disjoint subsets of Z , each of which is stable for
input range C and suppose u € Uc' The region of indecision (see
Figure 3.7) for (Lo. L. u) is the set

A

RID(L,. L,. u) 3 - [A(L : W) 1 AL, E)] (3.9)

3.4.2 Statement of the Extended Theorem

Theorem 3.1 (see Figure 3.8)
Suppose u € Uc and p € A(LO, u). Let T'CU be a connected set of

input functions, wR = I, with the following properties:

There exists t1 € R+, ul, U, € I' such that

(1) ¢(p. vy, t;) € AL,)
(11) $(p. Uy t;) € A(L_, B)

(iii) for all u €T, u, = u
1

Also, suppose ¢ is continuous with respect to u on T,
Then
there exists u € I' such that 3(p. u, tl) E RID(LO, Ll’ u).

Furthermore, for any T > 0, there exists e > 0 such that for

0<tgT

|u*— ul <e % (p,u t, +t) €LU Ll (3.10)

1 0

- 3.17 -

RTD (64,54 .0

e P T
A(L,,u) Aallly el
P
1,.\11 \ ¢(P:az,t1)
l
o(p,u,,t) o '
St !

u I

/ [op,u”
P h(p,u :tl)
/// . Il aRID(LD,Ll,E)

9(6(p,u,t,),u,T)

FIGURE 3.8 1Illustration of Theorem 3.1.

- 3.18 -

Proof and comments

Refer to Appendix A.

3.4.3 Applications of Theorem 3.1

Theorem 3.1 can be applied to sets of inputs which are found in
practical situations. For example, it is not necessary that inputs with
unbounded or undefined second or higher derivatives be included in the set
of possible inputs as is the case in [M.4]. The first example below
demonstrates this by having an input space with constraints on an
arbitrary number of derivatives.

Example 1

Let the system be a D-type flip-flop having the two stable states of
"set" and "reset". The precise details of the state representation are
not of concern here, only the fact that there are two stable states and
the flip-flop satisfies the system axioms. The inputs to the flip-flop
are the clock and D input. It is assumed that inputs take on values in
the interval [0, 1], giving an input space of I = [O, 1]2. Let the idle

input u be the constant function (1,1). The idle range C could be

defined as the disconnected set
c 4 {(clock.D) : clock € [0, 0.2] U [0.8, 1]. De[0, 1]} (3.11)
Note that the idle functions Ué only include inputs with the clock

maintaining a constant logic value, since inputs must be continuous. The

set of possible input functions, Fn' is defined by:

= 319 =

r 4 {u ~ (ul,uz}:R+e{o.1]2

dju.
1

dtY

u(0) = (0,0);

where B, ... Bn are positive derivative bounds.

1

~

contains inputs Uy and u,
in Figure 3.9.
The set T
n
connection is established by considering any two functions

in T .
n

is path connected (and hence connected [S.5]).

i=1or 2: uy differentiable to order n:

u(t) = (1,1) t>1 }

(3.12)

It is assumed that Tn

which set and reset the flip-flop as shown

Path

and u2

Define a path function f:[0,1] = Fn by f(s) = (1 - s)u1 + su2.

Set stable state

L

0

]Reset stable state

This has the required properties f{0) = u1 , (1) = u2 , T is continuous
and E{e] € T feor se [0.7].
l
A ;
D input I
0 < |
l ~
f B2
Clock input ’}{
P
O _4
! /
l ~
1 u:
]
1 ‘1 T\
‘ \ “a
Q output o -
0 - ™

FIGURE 3.9 Examples of Inputs Uy and Uy (dashed).

- 3.20 -

Hence, Theorem 3.1 can now be applied to show that a subset of the

functions T always exists that results in metastable behaviour
n

persisting for a time T. The time T can be arbitrarily long

(resulting in possibly small intervals of functions). This then shows

that the inclusion of functions with unbounded or undefined second and

higher derivatives is unnecessary for metastable behaviour to occur.

Example 2

This example is a two requester arbiter that is assumed to obey all
the system axioms. Two stable states, L0 and Ll‘ of the arbiter circuit
correspond to the assertion of each Ack output. The input space is again
assumed to be [0,1]2. The idle input u corresponds to both Req 1 and
Req 2 remaining at 1, that is u(t) = (1,1), and thus ideally the arbiter
should be in either LO or L1 and not RID(LO, Ll' u). The region of
indecision, RID(LO. LI' u) , cbrresponds to the arbiter being exactly in a
state of indecision forever. The set of input functions, I , has further
conditions placed on it in this example, so that functions are monotonic

and have a minimum and maximum rise time.

For fixed constants O < C2 < C1 . 0 Ce (< %

r & {u = (ul,uz):Rfﬁ [0.1]2 i=1or2: u differentiable;

dui
0 < a{“‘ﬁ C1 :
du_..L
for e ¢ ui(t) {1-e, T 2 C2:
u(0) = (0,0) ;
for t 2 1, u(t) = (1,1) }
(3.13)

T is assumed to contain reguest contingencies that result in either

requester being serviced.

- 3.21 -

r is now shown to be path connected. The same path function

employed in Example 1 cannot be employed here since the minimum rise time

dui(t)

condition EE———-Q C2 may not be satisfied for all functions on the path.

This can occur when a path is required between two functions whose

transition time intervals do not overlap. Instead, the path from u to
u2 is broken up into three sections:
. 1
(i) uwl to s
1 2

(1i)idses oo ls
(iii) s2 to u
are straight line functions jllustrated in Figure 3.10

where 51 and 52

and defined precisely below:

Fape
1-e + o L e et s 5
L |
\\ [i=10o0r?2
! [
5.
B Sy e i I
| |-
Ty ta r
s = (S{: s2)

FIGURE 3.10 Definition of 51 Function.

Since u, is monotonically increasing for us in the interval

[e, 1 -], there are unique points t;, t, such that ui(tl) = e and
1 - 2e
ts =y
1

the function s1 = [Sl' sé} defined below is an element of T .

ui(t2) =1-¢€. The slope lies in the range [Cz, C1] thus

- 3.22 -

[e(ty, - t,)
2™ Y
e(t, — t;) e(t, — t,)
T A 1 - 2 el T Yy 2™ Y
s;(t) = (t_tl)[—___tz - t'l] *e€.t - moag (<%t o
e(ty, — ty)
5
1 LTty + ——_(12_ 55 (3.14)

The functions ul and 51 are path connected with a path function

f(p):[0,1]» I defined by:

L A 1.1
£(p) = (£,(p) » £5(P)) = (1 - P} u” +ps (3.15)
It is clear that f(0) and f(1) are ul and s1 respectively. It
remains to show that f(p) €I for O {(p{ 1 . The conditions of I are
established in the sequence of definition in (3.13). Firstly,

fi(p) (i=1 or 2) is differentiable with

df . (p) 1 1
i du ds
dt = (1 - P) dt + p dt (3'16)
1 1 af (p)
. ds du i
Now since O ¢ Tt db < C1 then 0 < EE——m—-g C1 for 0{p <1 . By

1 .
the definition of s~ , and conditions on ul

0<t<t fi(p) <e
ty Sttty e £ fi(p) { 1-e (3.17)
t, {t 1-e < fi(p)

It now follows that

egfi(p)gl—e > tlgtgtz

1
du ds
i 1 - 2e
25— > C. . = — > C
dt 2 dt t2t1 2
dfi
> EE——Q C2 (3.18)

The remaining conditions of (3.13), namely that at t =0 fi(p) =0 and

for t 21 fi(p) =1 , follow since they hold for both u! and s' . This
then completes the proof that u1 and 51 are path connected. By
similar arguments it follows that 52 and u2 are path commected. All
that remains is to show s1 and 52 are path connected. One cannot
achieve this with the path function g:

g(p) 2 (1~ 1) st 4+ ps® | (3.19)

since the condition of minimum slope may be violated along the path.
Instead the following path function, h(p) = (hl(p). hz(p)) is employed,

illustrated in Figure 3.11 and defined in (3.20) below.

FIGURE 3.11 Definition of the Path Function h.

- 3.24 -

0 .Ogt(tB(p)

h (e)(0) 24 e - ts(p)][(l - p) {%} +p [%‘-%H t5(p) €t < t,(p)

B 5 4
i 1 .t t4(p)
where (3.20)
13 t; - ti 5 3 tg = t?
ta(p) = (1 - p) |t; - +p oty -
(1 - 2¢) (1 - 2e)
1 = t; - t} 9 13 tg = tg
t4(p)=(1—p) ty + +p |t; +
(1 - 2¢e) (1 - 2e)
t1 t1 correspond to the ¢t t, of s1
1" t2 P 1" ‘2
t?. tg correspond to the tl' t2. of 52

The slope of hi(p) between e and 1 - e lies between the slopes of
1 B

5] and 1 between e and 1 - e. It is easy to verify that h(p)
constitutes a valid path connection.

It has been shown that T is connected and hence there is a range
of functions from I that produces metastable behaviour. (The two input
case can be easily generalised to a k input arbiter.) That is, there is a
range of request functions which result in the arbiter being in a state
unable to decide between requests for every finite time allowed for
settling. An arbiter cannot be designed to always correctly assert one
and only one Ack output within a finite fixed time when asynchronous
requesfs occur.

The inpufs in the examples could be transformed by any continuous

function (i.e. preserves comnectivity) provided that two input functions

- 3.25 -

still exist that drive the system to either stable state, and metastable
behaviour would be unavoidable for the transformed inputs. For example,

any analog filter is a continuous transformation and could not change the

connectivity of the set of inputs.

3.4.4 Conclusions

The notion of connectivity of the set of possible input functions,
that includes two functions that drive the system to two stable states, is
sufficient to imply metastable behaviour can occur. The modelling of
inputs in terms of their connectivity is more applicable to inputs found
in practice, compared with the set of functions having a bounded first
derivative and necessarily including those functions with unbounded higher
derivatives as presented in [M.4]. Theorem 3.1 extends Marino’s work
[M.4] to apply in a wider range of situations more closely matching "the
real world".

The theory presenfed above on the unavoidability is directly
relevant to physically realisable systems, since it is felt that the
assumptions apply to all real systems. The most important assumption is
the continuity of the system state with respect to the inputs, time and
jnitial state. The fundamental result is that continuous systems cannot
consistently make discrete decisions within a finite time based on non
discrete or continuously variable inputs. Thus, a digital system, which
jntrinsically relies on discrete representation of information, cannot
perform perfectly reliably within a finite time when it must process
inputs whose timing is crucial in the decision process and yet can take on
a continuum of configurations. Note that for metastable behaviour to be
unavoidable, it is not sufficient just for the inputs to be asynchronous,

but also there must exist two input contingencies which drive the system

- 3.26 -

to different states and a continuum of input contingencies between them.
For example, a single input digital circuit which counts asynchronous
occurrences of input edges separated by a minimum time, can be designed
without metastable failure, since the circuit state is not dependent on
the timing of the input. However, if the restriction of a minimum
separation between input edges is lifted, then two edges very close
together will not be seen by the circuit and two edges much further apart
will count as two. In this situation metastable behaviour is unavoidable
due to the continuum of edge inter-arrival times possible between no

effect and two counts.

3.5 THE IMPORTANCE OF THE METASTABLE PROBLEM IN SYSTEMS

The errors caused by metastable behaviour are particularly difficult
to trace due to their random and intermittent nature. They are possibly
the cause of many unexplained computer crashes and other mysterious
digital system malfunctions [C.8, C.9]. In the context of systems
designed for high reliability, it is particularly important that careful
attention be given to reducing this form of failure to an acceptable level
[W.3].

It is good practice to design circuits in such a way that the
possible locations of synchronisation failure can be readily identified.
This can be achieved by confining the synchronisation processes to a
minimum number of interfaces, so that the effects of failure can be better
understood and evaluated. The ad hoc use of asynchronous inputs
throughout a system causes failures to be distributed in a complex way,
making design evaluation extremely difficult and error prone. Moreover,

inputs may in effect be synchronised more than once in the system,

- 3.27 -

increasing the probability of failure due to metastable behavicur. Even
without metastable failure, a distributed asynchronous input may be
interpreted differently by different parts of the system due to clock skew
effects, causing possible inconsistencies within the logic. Hence, it is
essential to synchronise first before any decisions are made using the
input.

An independent set of inputs should be synchronised if possible,
otherwise relations assumed to hold between variables prior to
synchronisation may be destroyed by the synchronisation process, and
inconsistencies may 6ccur.in later processing of the inputs. For example,
if two asynchronous inputs are complementary then after a marginal or near
marginal synchronisation event this complementary relation may not hold in
the synchronised version due to slightly different sampling times (for
example) or synchroniser characteristics. The solution to this simple
example is to synchronise one input only, and derive the other dependent
synchronised input using an inverter. Also, it is possible to avoid
unnecessary éynchronisation. by masking appropriated inputs with state
variables when the next state transition does not depend on the variables
being masked [M.T].

To achieve high reliability, it is good design practice to design
circuits in which the worst case of probability of metastable failure can
be estimated with confidence, otherwise another degree of unreliability is
introduced, namely, the uncertainty of estimation of reliability. It is
pointless to design a system that may be extremely reliable when there is
no method of reasonably establishing the limits of failure, causing the
system's reliability to be questionable. A design is only very reliable
if the technique of evaluating the probability of failure is very
reliable. Thus, it is essential to establish techniques for the reliable
estimation of probability of failure due to metastable behaviour. This is

the subjéct of the next section.

- 3.28 -

3.6 MODELLING METASTABLE FAILURE PROBABILITY

The analysis of failure probability of flip—-flops used as
synchronisers appears in several papers [C.16, H.3, P.3, R.1, V.1]. The
basic approach is to consider the behaviour of the flip-flop around its
unstable equilibrium point, where the flip-flop state is usuaily in its
linear region. When the state leaves this region, the flip-flop is
assumed to quickly resolve its output to either stable logic state, and
hence the non linear behaviour can be assumed to be of little consequence

to the metastable behaviour.

3.6.1 First Order Model

The first order model and analysis of a flip—flop proposed by
Veendrick [V.1] (see Figure 3.12)} are summarised here: The voltage
vl(t) is defined to be the difference in the complementary output
voltages at‘a time t after triggering of the flip-flop and i é vl(O).
The insignificant decaying exponential term of the solution to the
differential equations deséribing the first order model of the flip—flop

is neglected, leaving

t
w2 :
v.(t) v e (3.21)
1 o)
The time constant T is RC/(A-1), where A is the gain of a single

amplifier in Figure 3.12 and RC is the time constant of the amplifier.
For marginal triggering conditions, L is assumed to be uniformly
distributed between V4 and Vg where V4 is the "boundary" of the
linear region of operation of the flip—flop. Beyond i the output is
assumed to be defined as one of the two logic levels. The assumption that

V. is uniformly distributed can be justified in terms of the clock edge

sampling a uniformly rising data input gemerating v [V.1].

-~ 3:29 =

FIGURE 3.12 First Order Model of a Flip-Flop.

The probability of the metastable behaviour lasting longer than tc

is the probability that]vl(tc)] {vwv The voltage at - t, can be

q-
mapped back to its initial voltage in a monotonic way (as shown in

Figure 3.13), since exp(t/r) is monotonic. Thus,

t
g e
T
Prob [[vl(tc)] < vd} = prob [|v0| Cvye)]
t
e, w8
=e | (3.22)
Since Vi B exp(t/T), the uniform distribution of voltages at t =0

'is expanded by the factor exp(t/t) and is also uniformly distributed.
Superimposed small amplitude unbiased noise on vy ﬁas negligible effect
on the distribution of vy This can be seen by considering two adjacent
voltage regions. The number of states forced out of one region due to
noise will be replaced by an approximately equal number forced in from the

adjacent region. This qualitative argument has been verified

experimentally and theoretically in [C.16, V.1].

- 3.30 -

vl(t)

voexp(t/T)

v exp(—tc/T)

d

—vdexp(~tC/T) o

-V

FIGURE 3.13 Exponential Flip-Flop Response.

= B3l =

3.6.2 Exponentizal Model Based on Experimental Results

Experimental measurements made on flip-flops [C.7, F.2, L.1, V.1]
have led to the verification of therexPonential model for predictipg the
failure rate due to metastable behaviour. A model for the probability of
failure is presented in [C.7, R.1]. It is described here in terms of a
D type flip—flop, but can be generalised to any flip-flop.

Suppose the time between a data edge and a sampling clock edge is
td’ and has z uniform probability density, p(td) over an interval
[ta.tb] . Then,

0 td<ta
1
p(td) =13 t < ty < ty (3.23)
0 ty > &
where & = tas e ta and the flip-flop is set by t; =L, and reset by
ty = ty within a normal propagation delay. The times t, and t could

be chosen to correspond to the set-up and hold times respectively for the

flip—flop. For t uniformly distributed over this interval, F(T) is

d
defined as the probability that the flip—flop output has not reached a
logically defined and stable value at a time T after triggering.

Experiments have shown that for T > h (h defined below) this probability

can be represented as

T -
F(T) = (TO) e , T>h (3.24)

=3

The parameters T and To depend on the particular flip-flop. The
parameter h is the minimum value of settling time so that (3.24) fits

experimental data. Various values for the parameters of (3.24) are given

- 3.32 -

in [C.7] (where TAU is equivalent to T) for available flip-flops. It
is observed from [C.7] that there is a large variation in 7 and TO
within the same flip-flop type, giving many orders of magnitude difference
in the calculated examples of mean time between the synchroniser being
unresolved (MTBSU). This dramatic range of performance is particularly
disturbing in relation to designing below a particular error rate, ‘and
thus designs should be very conservative to guarantee a minimum metastable
reliability. In time critical or high reliability applications,
individual testing may be worthwhile to achieve high performance. A
practical way of achieving individual testing is to incorporate testing
circuitry oﬁ.the same chip as the synchroniser, so that synchronisers can
be tested easily. The test circuitry could be made semi-automated so that
fast and simple determination of a flip-flop’s suitability could be
achieved at the fabrication stage of a circuit. A design similar to that

proposed in [R.2] could be employed for the on-chip test circuit.

3.6.3 Aperture Model For a Flip—flop and Calculation of a Synchroniser
Failure Rate

With the first order model for a D type flip—flop and a uniform
distribution of the relative data to clock time, ty an exponential
relationship is obtained for the probability of the flip-flop not
resolving to a logic state within time T. In practice, with a uniform
distribution for the exciting signal, good agreement is obtained in the
probabilities. This is not to say that from a deterministic viewpoint the
set of values of td that cause metastable behaviour lasting longer than T,
M(T), form a contiguous subset of [ta,tb] as is suggested by the analysis
of the first order model. It is conceivable that because of internal

flip-flop characteristics, the set HM(T) 1is a non contiguous subset of

- 3.33 -

[t .t,] . as chown in the example of Figure 3.14. Nevertheless, provided
the probability density function of t, is constant over [ta,tb] one can
model M(T) as a contiguous subset of [ta.tb] known as an aperture as shown
in Figure 3.15. In view of the smallness of [ta,tb] relative to system
delays and clock periods, the uniform distribution is a good appro%imation
for most distributions over [ta'tbj' The example of an exponential

distribution is treated below:

[— et g] =
- i 6y
t, e . M) L. . ty

(td € M(t)) = (metastable behaviour > T)

FIGURE 3.14 Example of a Non Contiguous M(t).

The data edge arrival process is assumed to be a Poisson process

[G.2, K.12]. That is given any interval of time [tl't2]

—k(tz—tl)
prob(no data edge in [tl't2]) =e (3.25)

where A is the mean rate of edges. A D type flip-flop with a constant
clock period of Tc is employed as a synchroniser. Failure of the 7
synchroniser is assumed to occur if the output does not reach a valid
logic state a time T after the triggering clock edge. Focusing on one

clock period, let P ¢ be the probability of the flip—flop not failing.

- 3.34 -

ASYNCHRONOUS .
INPUT =i) Q
>
SYSTEM
CLOCK
At
—, ‘....——
CLOCK
ASYNCHRONOUS
INPUT
tdg METASTABLE
BEHAVIOUR AT LEAST T

Q B — —

FIGURE 3.15 Aperture Model for a Flip-Flop.

- 3.35 -

For the empirical model based on (3.24) and assuming § = t-t, < Tc

prob(no data edge in [ta.tb]) +

o
]

nf

+

prob(data edge in [ta,tb]) x prob(no failure| data edge in [ta.tb])

T
™)

R
L 1
>
o
4
~
ju—y
1
(1]

I
>
™

—

)

[
I
o

T
= 1 + e T (e - 1)

1l

Liin ke w Ok A6
- STAREE s ke

prob(no data edges within an aperture of width At) (3.26)

I

where O(A At)2 denotes an error of order (A At)z and

Fv BT (3.27)

The exponential distribution is assumed to be approximately a uniform
distribution over the time interval [ta,tb] which is assumed to be small
compared with the mean time between data edges ?1\— . in order to apply
(3.24) in (3.26) above. The aper‘ﬁure width , At , is typically of the
order of picosééonds for logic families with nanosecond order delays and
so A At <1 1is a reasonable assumption enabling the error terms in
(3.26) to be ignored. Thus it has been shown that the probability of
failure of the synchroniser with a Poisson data edge process can be
modelled by the aperture model since it gives a good approximation to Ps-

This result is generalisable to any input process that can be approximated

- 3.36 -

by a wuniform distribution over [ta.tb]. The failure rate of the
synchroniser is now calculated: Assuming P s is independent for each

clock period, it follqws that

IR

b
T

-A At

prob(no failure in [0, t]) [g] © (3.28)
where the approximation is due to t not always being an exact multiple
of TE. For t >> TE this can be neglected. Letting the clock

frequency (= %—) be fc then
o .

—(A At fc) t
prob(no failure in [0, t]) = e (3.29)

Equation (3.29) shows that the occurrence of metastable failure is another
Poisson process (i.e. inter-arrival times of failures are exponentially

distributed) with mean failure rate, MFR

MFR = A At £ (3.30)
Note the exponential dependence of At on T and T in (3.27). This
explains the enormous variation possible in the MFR even for modest

variations in T or T.

| 3.7 TECHNIQUES FOR IMPROVING METASTABLE RELTABILITY

This section discusses techniques that may improve metastable
reliability of synchronisers and compares the merits of the schemes. The
techniques are equally relevant to flip-flops, latches, interlocks,

inertial delays and other devices prone to metastable behaviour.

- 3.37 -

No previous work has appeared that analyses the Schmitt synchroniser
presented in Section 3.7.4 nor the possibility of applying redundancy and

masking techniques to the problem of metastable behaviour in synchronisers

considered in Section 3.7.5.

3.7.1 Fast Devices

Work has been done to design flip—-flops with small values of T
using tunnel diodes [E.1, K.3, L.2] to increase the speed of the device.
The use of fast logic for synchronisers, when the remainder of the system
logic is based on slower logic, represents a sclution to the problem of
achieving high reliability for synchronisation. However, when systems are
built for maximum speed, the system is likely to be realised with the same
fast logic technology in all parts of the system and the time scaled down
accordingly. Thus, the advantage of the previous high ratio of settling
time to the device Fime constant T is no longer present and alternative
strategies must be sought to achieve high metastable reliability.

The criterion of a device being fast does not always correspond to a
low probability of metastable failure. For example, a device may have a
fast switching time, yet exhibit extended oscillatory metastable behaviour
due to underdamping in the linear region of operation of the device. Test
results similar to those obtained in [C.7] should be obtained before
confidence 1is placed in a device's synchronisation performance.
Furthermore, Pechoucek [P.3] suggests that improved speed does not

necessarily result in reduced metastable durations.

- 3.38 -

3.7.2 Extended Settling Time

A simple technique to achieve a certain metastable reliability is to
allow adequate settling time after each synchronisation event [M.7]. As
shown in Section 3.6.3, dramatic (exponential)} improvements in metastable
reliability can be gained by increasing the ratio of settling time to
device time constant, T.

For example, in a synchronous system this can be achieved, as in
Figure 3.16 by cascading N+l flip-flops to obtain a delay of N «clock
periods before a sampled input is seen by the rest of the system. During
the N clock periods, a marginal input value has the opportunity to
resolve to either wvalid logic wvalue as it is shifted through the
synchroniser flip—flops.

An alternative scheme that also allows approximately N clock
periods settling time is shown in Figure 3.17. The system clock is
divided by (N-1) to achieve an uninterrupted settling time of (N-1)
clock périods between FF1 and FF2, and a further clock period between
FF2 and FFB;J-'The function of FF3 1is to eliminate the delay of the
divider circuit d from the final synchronised input available to the
system. The performance of the two schemes is analysed b& the author in
[2] where it is concluded that the divided clock scheme is superior when
several clock periods settling time are needed and many asynchronous

inputs are synchronised.

3.7.3 Pausable Clock and Metastable Detection Techniques

A scheme suggested in the literature involves the use of metastable
detectors and a pausable clock or extendable settling time [F.4, K.3, L.5,
P.3, 8.6, 8.T]. In an asynchronous circuit the settling time of a

flip-flop is extended when a metastable state is detected. In a

= 33D &

N+1 FLUP—-FLOPS

N\
- ™~
ASYNCHRONDUS SYNCH,
INPUT — D @ Qaf— D Qs
FF1 FF2 |eee| FFN+1 SYSTEM
A A A
l J]
% SYSTEM CLOCK
FIGURE 3.16 N+1 Cascaded Flip-Flop Synchroniser.
SYNCH.
?SJJJTCHRUNUUS 1p a, D 8, D O
FF1 FFe FF3 SYSTEM
A A A
A
| i
+(N—1) j«—¢
delay of d i

SYSTEM CLOCK

FIGURE 3.17 Divide by N-1 Synchroniser.

- 3.40 -

synchronous circuit the system clock is pausable as shown in Figure 3.18.
Each flip-flop is assumed to have an extra output M which is asserted
during a metastable state in the flip-flop delaying the next clock event
until the flip-flop has settled. This can be thought of as synchronising
the system to the input. It has been suggested [F.4, P.3] that a
metastable detector can be implemented using a level detection device.
Figure 3.19 shows the author’'s design of a pausable clock. This circuit
pauses and restarts the clock without runt pulses provided the delay in

detecting a metastable state after a sampling clock edge, tm satisfies

b tset—-up S T2 {881}

where tset—up is the set-up time required by FFp and T2. is the
positive clock pulse width. At most one positive edge on the pause input
is allowed to occur after each synchronisation.

. The pausable clock scheme has several disadvantages. Firstly, some
systems rely on a constant clock rate for correct operation and cannot
utilise this scheme. Also, it is questionable whether reliable metastable
detectors can be designed which are not subject to runt pulses on the
output when oscillatory metastable behaviour occurs. For example, a
simple threshold device may fail under oscillatory metastable behaviour,
examples of which can be found in [C.8]. Even for non oscillatory
metastable behaviour, the reduced noise margin caused by metastable
detectors may be a source of unreliability.

The problem of spurious outputs from the metastable detector is
particularly serious because the performance of the pausable system clock

is directly dependent on the metastable detector outputs. A failure of

the system clock is felt to be more serious than a single synchroniser

NCOZ0AVITOZ<XW0>

N—HCTUVZ —

- 3.41 -

D Q
> M
D Q
—> M
D Q
—> M

PAUSABLE CLOCK

Cout PAUSE

FIGURE 3.18 Pausable Clock Synchroniser.

o

NHCT-HCO OMWN—Z0XDLOZ<W

SYSTEM
CLOCK

- 3.42 -

::
I
R Qp
FF
PAUSE B
AN
DC out
i
T T, I 2
- -}
PAUSE
out *

=PAUSE X

¥

FIGURE 3.19 Pausable Clock Design.

- 3.43 -

failure because the effects of a system clock failure are more widespread.
The time to complete a processing task using a pausable clock scheme is
indeterminantly extended, and failure can be defined in terms of a task
finishing beyond a time limit. Comparisons with fixed clocks schemes have
been made [L.5] that suggest the pausable clock scheme is more reliable
under certain conditions which implicitly assume that problems of pausable
system clock reliability can be overcome.

In asynchronous circuits where no clock is present, the settling
time given to a flip—flop (or other device) is usually determined by
delays within the circuit. These delays may be designed to be variable in
response to a metastable detector if such a detector could be reliably
implemented. These designs are not considered further in this thesis due

to the problems concerned with reliable metastable detectors.

3.7.4 Schmitt Trigeger Synchroniser

It has been suggested that a Schmitt trigger can be employed to
"filter" metastable behaviour and solve the problem of metastable
behaviour [C.6]. In this section an analysis due to the author of two
synchroniser circuits is presented to compare the probability of
metastable failure in each circuit. The circuits are shown in Figure 3.20
and Figure 3.21. Figure 3.20 represents the simpler synchroniser,
consisting of two D-type flip-flops. This circuit allows one clock period
for the output of FFl. to settle before being sampled by FF2 to form
the output of the synchroniser. The Schmitt synchroniser in Figure 3.21
attempts to improve the performance of the simple synchroniser by
incorporating a Schmitt trigger on the output of FFl1 with the aim of
"filtering” a possible metastable state in FF1 before the metastable

state can affect FF2. The metastable behaviour of a flip-flop is

ASYNCHRONOUS
INPUT

ASYNCHRONOUS
INPUT

- 3.44 -

FIGURE 3.21 Schmitt Synchroniser.

D @ D Q2 OuTPUT
FF1 FF2
2\ 2\
SYSTEM
CLOCK
FIGURE 3.20 Simple Synchroniser.
R, Qs OUTPUT
FF1 Fre
A A\
SYSTEM
CLOCK

- 3.45 -

modelled using the first order model discussed in Section 3.6.1.
Associated with each synchroniser circuit there is a range of values of
v0 (the initial voltage sampled on the positive clock edge, vo =0
corresponds to the unstable equilibrium point between O and 1 logic
levels) that gives rise to failure of the synchroniser. Failure is
defined to occur when FF2 of each synchroniser samples a voltage between
e+ and +vd.

By comparing the ranges of ¥y that give rise to failure in the
synchronisers, the relative probabilities of failure can be determined
when the asynchronous input has the same stochastic properties for each
synchroniser.

Firstly, the range of ¥ that gives rise to failure is determined
for the simple synchroniser. A failure occurs if the output voltage v(t)
of FFl1 satisfies the following relation

-V

q S ¥ (T) < vy (3.32)

where T is the clock period. Substituting v(T) for vy using

equation (3.21) gives

<
4|3

e < Vo (v, e {3.33)

From (3.33) the size of the range of values of s for the simpleh

synchroniser Rl that give rise to failure is

~ |3

R, =2v, e (3.34)

-7

= 3:46 =

For the analysis of the Schmitt synchroniser, it is necessary to
adopt a model for the behaviour of the Schmitt trigger. Figure 3.22
illustrates the model adopted. The two thresholds of the Schmitt trigger
are assumed to be at gy and vy That is, if the Schmitt trigger has

an output of logic O, then the threshold is v, whilst if the output of

d
logic 1, then =-v is the threshold. Once the input passes through a

d

threshold, the output changes accordingly but delayed by ts and with a
rise time of t. as shown in Figure 3.22. The negative edge behaviour is
assumed to be similar. The first order approximation assumed for the
flip-flops results in monotonic inputs to the Schmitt trigger, hence,
issues relating to marginal triggering of the Schmitt trigger [M.3] are
avoided. The effect of non monotonic inputs is discussed at the end of
this section.

The Schmitt synchroniser is assumed to fail when the output of FF1,
v(t) passes through the Schmitt trigger thresholds vy and —vq at a
time which causes the Schmitt trigger output to be in transition at
t =T. Thig is illustrated by the timing diagram in Figure 3.23 for
positive edge transitions.

From Figure 3.23 it can be seen that failure occurs on a positive

edge output if

v(t) = vy for T - TS Ct«<T- t, t ot (3.35)

Substituting for v(t) from (3.21), and rearranging (3.35) gives

e < Vs (v, e (3.36)

- 3.47 -

INPUT {}— OUTPUT

A i
INPUT
.....VT —_—— e —— — —] — — —
Vim——————— s
OUTPUT
_V-T _______________

FIGURE 3.22 Schmitt Trigger Model.

- 3.48 -

SYSTEM
CLOCK

ASYNCHRONOUS
INPUT

t=T—tq t=T—t +1,

— — — — a——

Q1

SCHMITT
TRIGGER
OUTPUT

t=T

FIGURE 3.23 Failure of Schmitt Synchroniser.

- 3.49 -

Similarly for the negative edge, the range of values of ¥ that give

rise to failure is given by

e < v, vy e (3.37)

From (3.36) and (3.37) the sum of the size of the two intervals of Vo

that result in failure of the Schmitt synchroniser R2 is given by

T— i t

r
R, =2v,e {1—e T} (3.38)

With the assumption that the values of v, are uniformly distributed
between Vg and Wy under marginal triggering conditions R2/R1
represents the ratio of probability of failure of the Schmitt synchroniser
to the simple synchroniser. Note that the probability of marginal
triggering in. both synchronisers is equal since the asynchronous input is
the same stochastic process in both cases.

Comparing the two synchronisers, from (3.34) and (3.38) it follows

that
R s
2= {l—e q (3.39)
1

Assuming the flip-flop FF1l, and the Schmitt trigger are in th; same
logic family then (ts/T) >> 1. This follows since the propagation delay
of a Schmitt trigger tS is comparable with a gate delay, whilst T is
typically an order of magnitude smaller than a gate delay. For example,

from [C.7] for a 74S74 flip-flop T is at most 1.7 nsec and the propagation

- 3.50 -

delay of the Schmitt trigger, 74S11l, of the same logic family is typically
8.5 nsec. Even using a very high speed comparator with compatible STTL
output the propagation delay is of the same order. Also the rise and fall
times of the Schmitt trigger are at least as long as T (uéually much
longer) hence t /T > 1. Thus, it is concluded that Ry/R;>>1 which
implies that the simple synchroniser performs much better than the Schmitt
synchroniser. The significant factor is the loss of settling time due to
the fact that the propagation delay of the Schmitt trigger exponentially
deteriorates the probability of synchronisation failure, whilst the gains
due to the possibly short rise time of the Schmitt trigger are at best
linear (since 1 - exp[- tr/T] is concave downwards and passes through the
origin, halving the rise time results in 1 - exp[- tr/T] larger than
half its original value. But for tr/T K1, 1 - exp[~ tr/T] = tr/T).

It has been shown that the strategy employed in the Schmitt
synchroniser has had the opposite effect on the probability of failure,
compared with the simple synchroniser, that originally intended. A rather
simplistic view has been taken of the metastable behaviour of the
flip—flop by the first order model employed. It has been shown
experimentally, as discussed above, that the first order model gives
estimates of probability of failure consistent with probabilities of
failure in real flip-flops for the simple synchroniser circuit, however,
it is not as clear how applicable the model is to the analysis of more
complex synchroniser circuits such as the Schmitt synchroniser. The
effects of noise of the flip-flop output and possible non monotonic output
behaviour (eg. oscillations as observed in [C.8]) are not taken into
account when the first order model is assumed. It is felt that the effect

of these departures from the ideal first order behaviour of a flip-flop

- 3.51 -

would tend to increase the probability of fajilure of the Schmitt
synchroniser, since the output of the Schmitt trigger becomes less
reliable under these less ideal conditions. For this reason it is felt

that the above conclusions remain the same for practical non ideal

flip—-flops.

3.7.5 Redundancy and Masking Techniques

It is possible to mask component-failures using hardware redundancy
techniques and considerable literature exists which considers both
permanent and transient faults [K.1, W.1, W.2, W.4]. This section
considers the possibility of achieving improvements in the reliability of
synchronising an asynchronous signal by exploiting similar masking
techniques such as majority voting. As will become evident from the
results presented, synchronisation failure due to metastable behaviour
cannot be treated as a hardware component failure in the usual sense, and
redundancy and masking techniques are ineffective. This original result
[1] has not béén formally proved previously, nor been suggested elsewhere

to the author’s knowledge.

3.7.5.1 Masking in Svnchronisers

Figure 3.20 1illustrates the simplest form of a non redundant
synchroniser. In this circuit, metastable behaviour of the input
flip-flop, FF1, due to marginal triggering will be inconsequential
Aprovided it decays within approximately one clock period.

One possible structure of a redundant synchroniser, which exploits
the masking provided by triplicated voting in order to suppress the
anomalous behaviour of a synchronising element, is shown in Figure 3.24.

The outputs of the three input synchronising elements, IFFl .. IFF3, are

- 3.52 -
D 0
IFFI
ASYNCH. | :) v . 5 T
INPUT
IFF2 OFF
B .
D Q
IFF3
SYSTEM
CLOCK

FIGURE 3.24 Triplicated Synchroniser.

- 3.83 -

voted on after one clock period settling time. If one flip-flop is
unresolved, due to metastable operation, whilst the other two resolve to
the same logic value, then the voter circuit will mask the metastable
state. This occurs because the voter output is insensitive to changes in
one input when the ather two inputs agree. Should an input data edge
occur that results in two flip-flops resolving to different values, and
the third enters a metastable state, then the voter output may be
undefined, since changes in the third input affect the voter output in
this situation. Thus, the redundant synchroniser does not mask all
occurrences of one metastable behaviour in three synchronising flip-flops.

A number of possiEle modifications come to mind which attempt to
eliminate the observed deficiencies, for example, some form of phasing of
the clock on the input flip-flops and increasing the number of flip-flops
and voters. These possibilities can be incorporated in a general system
consisting of n synchronising elements with arbitrarily phased
synchronous clocks feeding =a combinational function as shown in
Figure 3.25. .ﬁote that the redundant synchroniser shown in Figure 3.24 is
a specific example of the generic structure of Figure 3.25, with n = 3,
= 0, and the combinational function is a majority voter. It

T =T = F

1 2 3
will be shown that for any non trivial combinational function satisfying
certain reasonable properties, the general redundant system, shown in
Figure 3.25, camnot improve upon the simple synchroniser, shown in
Figure 3.20, in terms of the probability ofr failure of the complete

synchroniser due to metastable behaviour of the primary synchronising

elements.

ASYNCHRORNOUS —

INPUT

- 3.54 -

FIGURE 3.25

CGeneral Redundant Synchroniser.

D Q
- IFF1
By >
D Q
T
i i > IFF2 C.]
- b
C2 Q§——— OUTPUT
= OFF
>
C
- 2]
D Q
T > IFFn
T
SYSTEM
CLOCK

- 3.85 -

3.7.5.2 Modelling of the General Redundant Synchroniser

The combinational function, f: {0, 1}n = {0, 1}, in the system
shown in Figure 3.25 will be assumed to satisfy certain idealised but
reasonable properties which are discussed in sequel.

The combinational function is assumea to be non trivial, in the

sense that

£(0, 0, ..., 0) =0

L ST T, . | ‘ (3.40)

That is, if all synchrohisers resolve to the same logic state, 0 or 1,
then the combinational function also gives the same value. Note that
(3.40) excludes the two trivial constant logic functions which, although
completely masking metastable states, do not represent a satisfactory
synchronised version of the asynchronous input.

Each of the n synchronising elements shown in Figure 3.25, namely
IFF1. IFF-nr is modelled as follows: The output after the one clock
period of settling time is one of three values 0O, 1 or M. The O
and 1 correspond to the output resolving to the respective binary logic
~levels of the system, whilst M corresponds to a synchronising element
output not resolving to either logic level, due to a metastable state
persisting for at least one clock period. An output M, at the end of
one clock period, is assumed to occur as a result of the asynchronous
input edge falling within an aperture. This input timing model is
consistent with the models adopted in [F.2, H.3, L.1, R.1] apd that
discussed in Section 3.6.3.

The model f{for the synchronising element is 1illustrated in

Figure 3.26, which shows the case of a positive asynchronous input edge

- 3.56 -

cLocK _— ,

[tl L,
APERTURE e I

| y

I I
ASYNCHRONOUS 1 |
INPUT | t |l

METASTABLE STATE
SYNCHRONQOUS '
OUTPUT Q

i Hy<t g tz then metastabie operation will persist for
at least time °T. :

I
SYNCHRONOUS 1

OUTPUT AFTER T: 1 M

|

|

| |
/s s
N /r

1 |
tL tL

FIGURE 3.26 Aperture Model for Flip-Flop.

ot

- 3.57 -

and the aperture of a synchronising element. In Figure 3.285, £
represents the time after the sampling clock edge at which the
asynchronous edge occurs. For t ¢ tl(i) the output of synchronising
element i after one clock period is 1:; for tl(i) £ £ ¥ t2(i) it is
M; and for. t 2 t2(i) it is 0. ©Note that the aperture position and
size is a function of the.synchonising element, allowing for variability
between the characteristics of the synchronising elements. Furthermore,
the aperture position as defined above includes a delay between the clock
input of each synchronising element and the system clock. The aperture
boundaries are assumed to be sharp in the sense that the synchronising
elements behave deterministically as a function of t as defined above.

In order to study the redundant synchroniser circuit shown in
Figure 3.25, it is necessary to define the behaviour of the combinational
circuit for inputs assuming the value M. Some inputs may be masked or
desensitised by other input values. It” was assumed implicitly in
discussing the voter that its output is unaffected by an M value on a
desensitised éﬁput- However, an input which assumes a wvalue M, when
sensitised by other inputs assuming their appropriate O or 1 wvalues,
produces an undefined of M output at the voter. This simple concept of
single input sensitivity needs to be extended to allow for the presence of
more than one M input at a time.

The following generalised definition of input sensitivity is
adopted: A set of inputs, which have the value M, is sensitised by
particular values of the remaining input variables if there are two
substitutions for these inputs that give outputs 0 and 1. It is
assumed that if the set of inputs which have value M is sensitised then
the output is M. This concept is expressed in the following definition

of an extended combinational circuit function, fir’ {0, 1. M}n - §0, 1. Mj.

~ 3:88 =

Definition: Let (Cl, R Cn) be an input vector with components
from {0, 1, M}, k of which have the wvalue M. Let
(Dl' § 'Dn) be an input vector with M valued components

replaced by 0 or 1. That is

C. if C.=00r C, =1
i i i
D, =
0 or 1 1if Ci =M
then
B, if f(Dl. « % wiy Dn) =B for all
2k possible substitutions
(Dl. a588 Dn), B € {0, 1}.
A
(G G =
M, if f(Dl. it Dn) is not constant
for all 2k possible substitutions
L (Dl' s ¥ g Dn)
(3.41)
Example: To illustrate the significance of the definition in (3.41),

the special case of the majority voter combinational function is
considered in detail. The output as a function of the 27 possible inputs
is shown in the Table 3.1. Metastable masking occurs in the rows 2, 4,

10, 18, 24 and 26.

— 3.89 ~

TABLE 3.1

EXTENDED MAJORITY VOTER FUNCTION

ouTPUT

INPUTS

ROW

X 1 }C2+X 1 XB +X2X3

*3

- 10

i1

12 .
13
14
15
16
17
18
19
20

21

22

23

24
25

26

27

- 3.60 -

Consider the redundant synchroniser in Figure 3.24 where the 3
synchronising elements IFFI, IFF2 and IFF3 have non overlapping
apertures (say tl(l) < t2(1) < t1(2) < t2(2) < t1(3) < t2(3)). In this
case, the output of the voter is M after one clock period if and only if
IFF2's output is M after one clock périod. Thus, the redundant
synchroniser has the same aperture characteristic as the single
synchronising element IFF2 and no improvement has been achieved in

reducing synchronisation failure.

3.7.5.3 Statement and Proof of the Result

Theorem 3.2 Assuming that the n synchronising elements IFF1,

.. IFFn - of the redundant synchroniser can be described by the
aperture model above, and that (3.40) and (3.41) hold for the
combinational circuit combining their outputs, then the range of
asynchronous input edge times that cause an undefined combinational
circuit.;utput after a clock period is'at_least as large as the
minimum aperture width of the individual synchronising elements
TFEL. . .2 IFEn. Thus, the redundant synchroniser’'s probability of
failure is no better than the best of its synchronising elements

acting alone.

Proof Only the positive asynchronous input edge case is considered
since the negative edge proof is similar. In this proof it is shown that
there is an interval of asynchronous input edge times that sensitises the
combinational circuit to a synchronising element which is exhibiting
metastable behaviour. The size of this interval is shown to be at least

as large as the minimum aperture width.

~3:61 ~

Firstly, the synchronising elements are relabelled by the

chronological order of right aperture boundaries, to give:
t5(1) < £5(2) < -ov < ty(n) (3.42)

Figure 3.27 shows a set of relabelled synchroniser apertures plotted
against the asynchronous input edge time. Note that if IFFi’s output is
O then IFFi-1, ..., IFF1 all have O outputs.

Consider now the following sequence of input vectors of the

combinational circuit that changes one input at a time:

b e N R 1)
o (OO 0.5 1 ..., 1)
where Cl=Cz=. =Ck_1=0
G =Gy = =G, =
1= (000, . 0) (3.43)
From (3.40) and (3.43) it follows that
f{ul) =3 f(un+1) =0 (3.44)
Hence, from (3.43) and (3.44), there exists an integer, i , such that
f(ui) =1 and f(ui+1) = 10 (3.45)

That is, with input vector u;. input C1 is sensitised. Now define

G 2 e {tl(l)' E(2) 04+ tl(i)} ' (3.46)

- 3.62 -

q I ™ 0
|
|
IF¥F1 1 [:{_
|
tl(l} : “2(1)
|
i
1
f
1 1 M 0
. g N
IFF] .
-
tl(J) tz(j)
|
]
1 | M 0
]
IFFi I : X
- l -
tl(l) | t2(l)
1 M 0
IFFn I 3{
tl(n) | EE(H)

rt
\i

FIGURE 3.27 A Possible Set of Apertures Illustrating the Proof.

- 3.63 -

It will be shown that for t1 <t (< tz(i) fM = M. The situation is

illustrated in Figure 3.27 where the maximum of (3.46) occurs at tl(j).

Now, for t1 <t X< t2(1)1

C,=0 or M for p=1, ..., i-1 (3.47a)

Ci =M (3.47b)

Cq =M or 1 for g =1i+1, ..., n (3.47c)
Equation (3.47a) f{follows since t > ty > tl(p); (3.47b) since
tl(i) g <tk tz(i) and (3.47c) since t < t2(i) < t2(q). These
relations can be easiiy seen in Figure 3.27. Two substitutions

o s | 1 2 2 2]

(Dl. D2, . Dn) and (Dl. D2. S5y Dn) for (Cl' s Cn) that differ

from (3.47) only in M wvalue positions are defined below:

D1=D2=O p=1, , 1 =1

P P

Dhm 1, D= (3.48)
1 1

DI:Dzzl g=1i+1, ,» I

It can be seen from (3.43) that these two substitutions are simply u,

and LI Thus (3.45) and (3.41) imply that

f =M for t

- ; <tk tg(i) ' (3.49)

- 3.64 -

Now the width of the interval (tl’ t2(i)) is examined. Recalling

that the maximum of (3.46) occurs at tl(j) (and hence j < i)

£5(1) -t = (1) ~ £,(3)
2 t5(4) - t(3). from (3)
2> min {tz(k) - tl(k)} (3.50)
k:l, swwy R

Relations (3.49) and (3.50) establish the first part of the theorem.

To examine the probability of failure due to metastable behaviour of
the non redundant syncHroniser of Figure 3.20, the probability of Q1
being undefined when the output flip-flop, FF2, samples Ql after one
clock period, needs to be determined. The probability of failure of the
redundant synchroniser of Figure 3.25 and the non redundant synchroniser
of Figure 3.20 can be compared By considering the probability that the
input of the output flip-flop is undefined at the time of sampling. This
is a legitima£é comparison of the relative performances, since the output
flip-flop can be assumed to exhibit the same behaviour in both cases.

Under reasonable assumptions regarding the stochastic behaviour of
the asynchronous input, it is shown in Section 3.6.3 equation (3.30) that
for the non redundant synchroniser of Figure 3.20, the rate of FFl not
resolving to a valid logic state after a clock period due to metastable
behaviour is proportional to the aperture width of IFFl. ' It has been
shown that the set of time instants giving rise to an wundefined
combinational output in the redundant synchroniser contains a contiguous
interval whose width is at least as large as that of the best
synchronising element. Hence, the probability of the input to FFO of
the redundant synchroniser being wundefined is bounded below by the
probability that would result from the best synchronising element acting

zlone s in Figure 3.20.

- 3.65 -

3.7.5.4 Observations

It should be noted that the combinational circuit in the redundant
synchroniser of Figure 3.25 was assumed to introduce no delay. The effect
of 2 non zero delay is to reduce the settling time allowed for each of the
synchronising elements. This has the effect of dramatically increasing
the aperture width of the synchronising elements as can be seen in
equation (3.27). This implies a further degradation in performance of the
redundant synchroniser.

In conclusion, it has been shown that based on a simple model for
the metastable behaviour of a synchronising element, mno effective
improvement in synchronisation performance can be achieved by employing
any number of parallel synchronising elements, regardless of the way their

outputs are combined in a combinational logic circuit.

3.8 CONCLUSION

This chapter has presented an overview of developments in the study
of metastable' ;behaviour in digital circuits, with more detailed treatment
of contributions by the author in areas of analysis and modelling of
metastable failure, and development of rigorous techniques to establish
the unavoidability of metastable behaviour. Furthermore, the chapter has
emphasised the need to design with special attention to the problem of
metastable failure in order to achieve high reliability, especially in
light of the dramatic range of failure rates possible. Further
development of accurate analysis techniques to predict the metastable
reliability performance should be pursued to fill a wvoid in the
~literature.

A number of techniques for reducing the probability of metastable

failure have been presented. These include the use of fast, specialised

- 3.66 -

devices, pausable clocks, redundancy and masking, extended decision time,
and filtering combined with extended decision time. Quantitative, as well
as, qualitative evaluations of techniques by the author have been
presented. It appears that the simple solution of adequate settling time

combined with the use of properly tested fast devices is the most reliable

method of reducing the failure rate to a negligible level.

= 4.1 =~

CHAPTER 4

ANALYSTS APPROACHES AND MODELLING OF ARBITERS

4.1 INTRODUCTION

It was shown in Chapter 2 that the characteristics of arbiters are
key factors in determining the performance of computer systems due to the
central role of the arbiter in primitive resource allocation. The aim of
this chapter is to introduce the analysis approaches that can be taken to
assess the performance of arbiters. Since the suitability of different
approaches depends on the modelling assumptions adopted for the arbiter,
it is convenient to define and discuss the models in conjunction with the
approach of analysis. The actual analyses are deferred to later chapters.

The organisation of this chapter is as follows: Section 4.2
discusses the applicability of queueing theory results and the few
previous attempts at a theoretical analysis of arbiters. The approaches
taken by the author are introduced in Sections 4.3, 4.4 and 4.5.
Sections 4.3 and 4.4 discuss modelling of batched and non batched arbiters
respectively, with the batched and non batched fixed priority disciplines
used as detailed examples. The analysis approach discussed in
Sections 4.3 and 4.4 is based on the technique known as imbedded Markov
chains. To the knowledge of the author this approach applied to arbiters
is new and, in particular, no previous analyses of batched arbiters ha%e
appeared. The analysis allows general service time distributions and
modelling of circuit delays of the arbiter. In Section 4.5, the commonly
used Monte Carlo approach to arbiter analysis is discussed and compared
with the theoretical approaches. The chapter ends with conclusions
concerning the different analysis approaches, possible improvements,

generalisations and future work.

e

4.2 QUEUEING THEORY TECHNIQUES

A widely accepted notation and classification of queueing systems

[G:2. K. 12] is:
arrival process /service process /number of servers
and an optional appendage with defaults in brackets is:

/ capacity of system (®) /number of requesters ()

/ service discipline (FCFS).

The arrival and service processes are described by their inter-arrival and
service time probability distributions, with the following mnotation

commonly employed:

M Exponential. (Markovian)
D Constant (Deterministic)
G General

The M/M/1 system is the simplest queueing problem due to both arrival and
service time distributions being Markovian [K.12]. FCFS systems with both
arrival and service distributions Markovian are classified as elementary
queueing problems [K.12]. An elementary queueing model for a FCFS k
requester arbiter is the M/M/1/k/k system which is often .called the
machine repairman problem. The M/M/1/k/k system can be analysed using a
birth-death continuous time Markov process that enables the steady state
queue length distribution to be expressed in the form of a truncated

Poisson distribution [G.2, K.12]. Performance measures can be derived

- 4,3~

from the steady state queue length probabilities, such as the mean number
of requests pending, mean waiting time, mean resource utilisation and the
effective arrival rate of requests. These performance parameters are a
function of the request loading and are independent of the discipline for
identical requester excitation characteristies [B.1, G.2, K.12, M.5].

The elementary queueing theory approach has several drawbacks: The
discipline is limited to FCFS; arrival and service distributions must be
exponential: and only ideal models with no inter-service delay are
treated. These points are discussed in sequel below.

Disciplines other than FCFS need to be analysed when the following
measures are required: Higher than first order moments of waiting times;
the mean waiting times of each requester; and proportion of time allocated
to each requester. Priority queueing theory results examined in the often
quoted work by Jaiswal [J.1] are limited to infinite soufce models when
the number of priority classes is greater than two. These results are
described as algebraically complex. The finite source case (applicable to
arbiters) is claimed by Jaiswal [J.1, p.152] to lead to "much more
complicated results” and these are not presented. (The complexity of
finite source models can be attributed to the arrival process of requests
being dependent on the number queued. This may explain the scarcity of
literature studying mnon FCFS arbiters from a theoretical viewpoint.)
Mahlemann [M.9] examines an M/M/1/k/k system with fixed priority classes,
where requests within the same class are resolved by FCFS. The state
transition rates are derived for the continuous time Markov process. The
complexity and number of simultaneous equations to be solved for the
steady state probabilities prevents a closed form solution. For the
simple case of a fixed priority arbiter 1 +} L states are required

; k
(e.g. a 6 requester arbiter has 193 states). This to be compared with 2

= 4 A —

states (e.g. k = 6 requires 64 states) for the analysis employed by the
author in Section 4.4 and which allows general service time distributions
and inter-service delays.

The assumption of an exponential re-request time distribution may
not be an accurate model for autonomous random requesters due to possible
"bursty” arrival periods or other fluctuating behaviour. The exponential
distribution more accurately models requesters that have equal likelihood
to request at any time (provided they have not already requested). That
is, their re-request time distribution 1is memoryless, wmeaning the
probability of a request is independent of the time already elapsed since
last receiving service. The exponential distribution is the only
distribution with the memoryless property [G.2, K.12] and it is this
property which makes the exponential distribution a suitable basis for
analysing queueing models. Many random events can be successfully
modelled with the exponential distribution but its limitations cannot go
unnoticed.

The fuiiy interlocked protocol between Req and Ack discussed in
Chapter 2 ensures that requesters cannot buffer requests while waiting
access to the resource. This assumption corresponds to the finite
population assumption made in queueing theory [G.2, K.12] and models
requesters, such as processors, which cannot proceed until they receive
access to the resource, such as a bus or common memory. This blocking
action on multiple requests from the one requester is a property of the
primitive level of resource allocation offered by arbiters as discussed in
Chapter 2 - at a higher level, a processor requesting an 1/0 transaction,
for example, may proceed with other tasks which may themselves generate

further I/0 requests, until the transaction is completed.

— s By

The assumption of an exponentially distributed service time may not
be a good model, especially with resources such as buses and memory where
the service time is often constant. An exponential distribution weights
very short times more than longer times. It is often the case that the
minimum service time is significantly above zero. Considerations of this
type encourage the adoption of a general service time distribution
assumption, as is done by the author. Once a general service time
distribution is assumed, analysis by employing a continuous Markov process
is not possible due to the non Markovian service process. A Markov
renewal process or an imbedded Markov chain [G.2, K.12] is employed by the
author. This approach applied to arbiters is new to the author's
knowledge.

Kleinrock shows [K.12 Vol II pp 210-212] that the queue length
distribution of a M/R/1/k/k system, where R denotes service time
distributions with a rational Laplace transform, is independent of service
distributions with the same mean. From this result it may be suggested
that the peféormance measures of the M/G/1/k/k queueing problem are
relatively insensitive to different service time distributions with the
same mean. Small, but not insignificant, sensitivity to the distribution
is borne out by results obtained by the author on performance measures
other than the queue length, such as MWT(h) and PROP(h) presented in later
chapters. Thus, it is more precise to employ the appropriate, possibly
non Markovian, service distribution best modelling the application.

Performance measures are, however, sensitive to the magnitude of
some non ideal arbitration delays that occur between service times or
batches as can be seen from results presented in Chapters 5, 6 and 8. As
will be seen in Section 4.3, some of these delays cannot be incorporated

at the end of service times because requesters are enabled to re-request

= 4.6 =

before these delays by their acknowledge signals resetting, while if the
delay were modelled as appended to the service time, the requester would
not be enabled to request until the end of the delay. These delays
consequently cannot be modellgd accurately by incorporating them into the
service times of the queueing model M/G/1/k/k. The structure of the model

employed by the author is described in the next section.

4.3 MARKOV APPROACH TO THE ANALYSIS OF BATCHED ARBITERS

In this section the method of imbedded Markov chains [G.2, K.12] is
described as applied to the analysis of batched arbiters. Due to the
flexibility of the approéch, time intervals resulting from circuit delays
occurring at the start and end of the'servicing of batches of requests can
be modelled. These non ideal durations, in which no requests are
serviced, are referred to as inter-batch delays and are usually smaller
than service times in well designed arbiters. The other adfantage of the
approach is th? capability to treat general service time distributions
which may be different for different requesters. The ' underlying
assumptions necessary for the analysis are defined precisely in
Section 4.3.3, but the most important is the Markovian re-request. time
distribution which is necessary for the sequence of batches to be modelled
as a Markov chain.

The key step of the method of imbedded Markov chains is the
identification of so called regeneration points. At the time of a
regeneration point, the process is renewed in the sense that all past
history becomes irrelevant for predicting future events. In a batched
arbiter, the times at which requests are locked out, called batching
points (or in terms of the general model, when the batch marker is moved

to the end of the queue), form a sequence of regeneration points. The

- 4.7 —

sequence of discrete times defined by the regeneration points enables gz
discrete time Markov chain to be formed, where the state is defined just
after each regeneration point. Since requests occurring between batching
points determine the composition of the next batch, the state of the
arbiter is dependent only on the state at the previous batchiné point
(provided the discipline is amenable to a Markovian state representation -
this is discussed more fully below). This result is proved formerly in
Section 5.3 for a fixed priority batched arbiter, where the state is
defined to be the set of pending requests at a batching point.

Once regeneration points are defined, state transition probabilities
are derived for the Earkov chain. Provided the Markov chain is
irreducible and acyclic [G.1, G.2, K.12] unique steady state probabilities
exist and are independent of the initial state of the arbiter. From the
steady state probabilities, performance parameters can be derived for the
arbiter.

These results assume the batched discipline is Markovian. For a
fixed priority batched arbiter the discipline is static and hence its
state is not influenced by past events at all (and is not included in the
state definition). Other batched disciplines, such as dynamic priority
batched disciplines, are dependent on the previous state history of the
arbiter. For example, LRU is dependent on the order of most recent
services of each requester, and so can be dependent on events occurring an
unbounded time in the past. This does not present a problem when the
discipline state‘ is defined appropriately, for example by the current
priority mapping. With this state definition the discipline can be seen
to be Markovian, as demonstrated by the iterative relation on the dynamic
priorities presented in Chapter 2. All the other disciplines presented in

Chapter 2 are Markovian when an appropriate discipline state definition is

G o=

adopted. The total arbiter state can then be represented as a two
dimensional vector of the discipline state and request state just after a
batching point. However, it is conceivable that a discipline could be
defined in such a way that either a Markovian state representation cannot
be found or all Markovian state representations are of infinite dimension.
For example, a dynamic priority discipline can be defined that rTequires an
infinite dimensional state representation as follows: Priority is given
in order of each requester's individual sum of previous waiting times. In
order to determine these priorities, tallies of waiting times (real
numbers) should be kept for each requester which theoretically requires an
infinite number of stateé.

The analysis approach of finite imbedded Markov chains must
obviously be restricted to disciplines with a finite Markovian state
representation. In this thesis details of the analysis technique are
restricted to the fixed priority batched arbiter where no discipline state
representation is necessary, however the generalisation to any Markovian
discipline is.not difficult but adds to the complexity, especially in the
number of states and transitions, and is left for future work. Moreover,
the analysis of the fixed priority batched discipline is more fruitful
than would be the case for symmetric disciplines, due to the bias in

request treatment which is observed in the MWT(h) and PROP(h) results.

4.3.1 Examples of Asynchronous Fixed Priority Batched Arbiters

One example each of a centralised and a distributed asynchronous
fixed priority batched arbiter is presented in this section with the aim
of developing a general model for ‘asynchronous fixed priority batched
arbiters. The general model is presented in the section following. Other
batched disciplines can be modelled in =2 similiar manner. Clocked

versions are considered in Chapter 7.

- 4.9 -

Distributed Example

A simple distributive daisy-chained arbiter is described in this
example. Similar designs have appeared elsewhere [C.5];

In the distributed arbiter circuit shown in Figure 4.1. each
requester has a circuit module associated with it. The modules are
connected via a daisy chain and a common line. The order of the modules

in the daisy chain determines the priority of the requesters.

+Vee

:

~ =~ Common line
Ll L7 D
¥ A A

Req 1 - Req 2 — Req k —

Module 1 = =
. P Module 2 Kok b e Module k

DIt} " |DO 1 Dl2‘ bo 2 DI k DO k
ll1l!' ; _____

Head of Daisy Daisy chain

FIGUERE 4.1 Structure of the Decentralised Daisy-Chained Batched Arbiter.

The start of the daisy chain is connected to logic '1', and the daisy
chain is "threaded" through each module. When 2 module Teceives a 1 on
the daisy chain from higher modules in the chain, it passes the 1 further
down the chain if the module has no request latched from its requester,
otherwise it "keeps" the 1 until the latched requests have been serviced.

This is achieved by use of the common line which realises a wired-or

- 4,10 -

function of all the latched requests of the k modules. The common line
is asserted when at least one request is latched. When the common line is
asserted, no new requests can be latched in the modules, and when all
latched requests have been serviced, the common line resets and all
pending requests are latched.‘ This has the effect of batching requests
and preventing a high priority requester hogging the system by continually
locking out the other requesters.

Figure 4.2 shows the details of one module in the arbiter.

Figure 4.3 illustrates the internal arbiter timing at the end of a non

zero batch and identifies the inter-batch delays that occur. The
following abbreviations for delays appear in Figure 4.3. FFreset is the
flip—flop reset time; gd is a gate delay: clp is the common line

propagation delay between modules ¢ and h; Tn rev is the delay on the
reverse edge through Tn. n=12,3,4 ; dcpd is the daisy chain
propagation delay from module 1 to h.

The batch in Figure 4.3 is terminated by requester & resetting its
request line; vcausing the common line to reset (high). Low-high—low
pulses can occur on a wired-or line connected to open collector drivers
even when a driver is constantly active (low) [G.5]. For the case of the
arbiter circuit, the width of these spurious pulses is less than twice the
maximum common line propagation delay, clp. (An alternate solution to the
problem is to use current drivers in place of open collector drivers to
eliminate spurious pulses. This scheme is employed in the Fastbus Cable
Segment [C.10]). The edge delay T, Aacts as a filter, which prevents
common line low-high-low pulses of duration less than 2 clp from entering
arbiter modules. Hence, a delay of T4 and reverse edge delays, Ty Tev

and T, Tev, occur before the daisy chain is reset at which time only

= il =

+V

common line

(terminated externally)

Gl

Open

Collector
T

|

v
REQ Ack Daisy in Daisy out

FIGURE 4.2 The Daisy Chained Batched Arbiter Module.

-4.12 -

‘yojeqg oiaz uoj Fo puy 1oy weiderq SUTWIL €'y MANOIA

HOLVE J0 dN#
NQ €

a
W .

pdop

_
“
_
_
_
_
|
_
“
|
_
_
_
|

Vigaoa® 14 "14p8

A91 '14-Elpaaa 14ps

S

-
=<

214 Elpasa M4pd

ey

>mpwk+>mHmP+;H+ww

PN AV S A ——— S e

aTnpow
asyloue
£1q9Fssod

dyo4p84| 1952144

e

p8+19saill

Y oy

ub

1 ano

410

¥RV

3 - b3y

[

de

- 4.13 -

module 1 has "daisy in" asserted. The latch is enabled a time T~ Ty Tev
later, in order to allow the daisy chain to reset before any flip-flops
are set. The time duration from the last requester in a batch dropping
its request to the enabling of each latch is denoted Dl' Note that if no
request inputs are high of the end of D1 a zero batch would follow
immediately.

The next time duration, D3. occurs only when requests are pending
at the end of Dl' The requests are latched by their respective module
flip—flops when E goes low, causing the common line to be asserted
(low). The removal of the enable to the flip-flops occurs as a result of
the common line going low but is delayed by T3 to guarantee a minimum
enable pulse width. This completes D3, and any further requests
occurring after D3 are not latched until all requests that have already
been latched are serviced in the next batch.

The first acknowledge does not occur until after Ty delay plus the
delay for the daisy chain to propagate to the highest priority module with

a flip—flop set. The delay T is present to allow metastable settling

2
time for flip-flops whose request input happens to be asserted very close
to when the enable is removed, causing marginal triggering of the
flip-flop. Notice that any requests occurring during or after D2 are
not latched until after all latched requests are serviced.

Consider now the case of a request dropping during a batch. When a
requester finishes with the resource and drops its request whilst other
requests are latched, the daisy chain propagates a "1" further down the
chain until another module blocks it and the respective requester takes

the resource. The common line is not affected (apart from spurious pulses

mentioned above) since there are still latched requests.

- 4.14 -

The transition from a zero batch, the idle state of the arbiter, to
a non zero batch is similar to the above timing diagram except D1 is

absent, whilst the non zero to zero batch transition is similar except
with D2 and D3 absent.

The fixed priority batched arbiter model described in the next
section approximates this decentralised daisy chain arbiter by assuming
Dl' D2 and D3 are constant. The time durations Dl' D2. and D3
shown in Figure 4.3 may vary slightly between batch transitions and
modules due to different common line and daisy chain propagation delays,

but the effect of incorporating differences is felt to cause unnecessary

complexity for little or no improvement in modelling.

Centralised Example

A centralised asynchronous fixed priority batched arbiter is shown
in Figure 4.4. The priority logic imﬁlements the fixed priority
discipline of the arbiter (a priority encoder-decoder circuit may be
designed simiiar to that used in the non batched fixed priority arbiter of
Figure 2.9), where an Ack output can only.be asserted when the enable is
asserted.

1" 7o and Ty are similar to

those in the previous example. T delays enabling of batches until the

The functions of the edge delays T

priority logic is fully disabled; T, determines the metastable settling

2
time and T3 enables a minimum enable pulse width tp be guaranteed at the
end of a batch.

The timing of the arbiter for a non zero to non zero batch
transition is similar to the previous example except that Ty = 0 and
decpd is replaced by the priority logic delay. Similar inter-batch
durations Dl' D2. and D3 can be defined. Due to the centralised

nature of the circuit, Dl' D2, and D3 vary little between batches.

— 4 15 ~

b

Reg 1

Reqg 2

Req k

T1

OR

PRIORITY
I0GIC

Fnable

FIGURE 4.4 Centralised Batched Fixed Priority Arbiter.

Ack

Ack

=t

a2

- 4.16 -

4.3.2 Fixed Priority Batched Arbiter Model

The behaviour of arbiters with fixed priority and batching can be
described :by the following model. Suppose, initially the arbiter is
idling (no requests pending). The first request initiates a time interval
of duration D3. This and other requests lodged during D3 are batched
together, and later requests are not considered until all the batched
requests have been serviced in a logical time period referred to as a
batch. As shown in Figure 4.5, a non zero batch consists of a time
interval D2 followéd by priority ordered servicing of the batched

requests followed by another time interval D1 and then, if at least one

request is lodged during the batch, a further time interval D3 follows.

‘increasing time

1D3lD2|ts(g)[tS(')1... |t5(')|D1|D3 D2|ts(h)|,... [ts(°)]D1
1 I ! I 1 1 1 i 1 I 1 1

zero batch non zero batch non zero batch Zero

batch

requests: TTT ... T T

FIGURE 4.5 Batch Transitions of the fixed Priority

Batched Arbiter Model.

Example

The arbiter presented in - this example 1is designed for three
requesters labelled 1, 2, and 3. The highest priority is given to 1 then
the next priority to 2 and 3 is the lowest. The request pattern
determines the behaviour of the model. Figure 4.6 illustrates a seqﬁence

of events.

- 4.17 -

idle |D3 D2|ts(1) |1:5(3) {Dl IDB‘Dzlts(l) 'ts(2) ID1 idle
I I

] —
incoming T1 1 T

requests: 371 2 1

FIGURE 4.6 Example Model Behaviour.

Definitions of time durations

D1 ‘occurs after all batched requests have been serviced.

Dz occurs after requests are batched. Requests lodged during D2

wait until after all currently batched requests have been
serviced before being batched themselves.
D occurs at the end of all batches preceeding a non zero batch.

Dy

the end of D1 in a non zero batch, otherwise a zero batch

is generated only if at least one request occurs before

follows Dl' In a zero batch D3 OCCurs as soon as a

Tequest occurs.
ts(h) corresponds to the time duration in which requester h is
serviced and holds the resource (Ack h high).
The time duration ts(h) correponds to Ack h being high. The order
ts(h) occurs within a batch is determined by h, with the smallest index
h occurring first. Other batched disciplines could be modelled with the
same model structure and the appropriate order of servicing within a
batch.
For every batched request, a corresponding ts(h) appears in the
batch. The service times, ts(h). occur consecutively after D2 in

order of priority.

— 4 18 =

Remarks

(1)
(i1)

(iii)

(iv)

(v)

(vi)

The case of D1 = D2 = D3 = 0 1is not excluded.

There are 2k possible different batches, where k is the number
of requesters.

The composition of time duration in a batch is a function of not
only the requesters serviced during the batch, but also whether =
request occurs before D1 ends, because the existence of D3
depends on such a request. (This was ignored in counting batches in
remark (ii) above).

A singleton batch refers to a batch in which only one request is
serviced. Suppose D1 = 0, then the last requester serviced in a
batch cannot form a singleton batch immediately following, without
an intevening zero batch. (It is assumed that requester h requests
a non zero time after its last ts(h)).

If D1 = D3 = 0, the lowest priority requester serviced in a batch
cannot be serviced in the following batch.

A full batch refers to the batch in which all requesters are
serviced. If D1 = D3 = 0, remarks (iv) and (v) imply the full

batch never occurs.

4.3.3 Re-Request Time and Service Time Modelling

In both the batched and non batched analyses presented in Chapters 5

and 6 respectively, the following assumptions are made -concerning the

requester execution of the models. The first is a result of the signal

convention:

(1)

A requester is a finite request source of size 1. (That is, at most
one request can be lodged by a requester and must be held until

acknowledged).

= 4,19 -

(ii) Re-request times are independently and exponentially distributed:

._>\ht

prob(no request in [0,t] = e (4.1)

where 1 is the mean time to request or alternatively, hh is the

M

‘mean request rate from requester h when Req. h = 0.
(iii) Service times are independently distributed with a distribution

function fh for requester h

%

prob(ta < ts(h) < tb) = fh(t)dt (4.2)

t
a

where the mean of ts(h) is denoted l-.

4.4 MARKOV APPROACH TO ANALYSIS OF NON BATCHED ARBITERS

The approach of imbedded Markov chains can also be applied to mon
batched arbiters. The difference with respect to the batched case is in
the location of the regeneration points which mark the discrete state
transition times for the Markov chain. In an ideal non batched arbiter
with no inter-service delays, the regeneration points occur at the start
of each service time or idle period. At these times in an M/G queueing
system, all memory due to the non Markovian service distribution is
"flushed"” and the process is renewed in the sense that the memory starts
again from the regeneration point. In a non ideal arbiter with non zero
inter—-service times the regeneration points can be defined at the start of
a service phase where the arbiter locks out consideration of further
requests in order to arbitrate. The regeneration point at the start of an
idle period occurs at the latest time such that if a request were to occur
at that time no extra time would be introduced in the state transition to
the next service. These points are considered in more detail in the

example presented in the next section.

- 4.20 -

4.4.1 Example of an Asvnchronous Non Batched Fixed Priority Arbiter

The example presented in this section is the asynchronous daisy
chained distributed fixed priority arbiter described in Chapter 2. The
module interconnection and circuit details are shown in Figure 4.7. Since
the arbiter design is similar to that of the distributed design in
Section 4.3.1, a description is given only in terms of the differences
between the designs.

An extra distributed wired-or line, BUSY , is employed to reset
all module flip-flops, excépt the one currently being serviced (and
REQ FEND corrresponds closely to the common line of Figure 4.1). The
arbiter then acts like the batched version, except batches are limited to
a size of at most one service due to the resetting action of BUSY. A
filter corresponding to T, on the REQ PEND wired-or line, is not needed
for the BUSY line since at most one open collector driver ever is active,
preventing spurious pulses [G.5] when a driver effectively releases

current into the line when another driver holds it low. The timing of the

arbiter is shown in Figure 4.8 , which shows transitions from an idle
state to a service state and to another service state. Reverse edge
delays are neglected in the timing for simplicity. The model of the

timing shown at the bottom of Figure 4.8 is almost identical to the batch
model presented in Section 4.3.2, except that batches are always of length’
at most one here.

Since a time duration D:2 always occurs at the start of a service, it
can be modelled as within the service time by adding an offset to every
service time distribution. (This assumption must be remembered when
calculating utilisation performance measures if a non zero D2 is to be
taken into account. A non zero D2 is not taken into account when

comparing non batched disciplines in this thesis.) Another simplification

+Vcc

= 4y

21 -

| Y ﬁa;i | |
|A0%4 | 57 | B0
= Busy | s,
2074 | 2074 (2
& A [& A A
Reg 1 —* Req 2 —™ Req k —
Module 2 . odule
acic 1o ioddlect Ly b 9 o hle i e e %
Dl 1 po 1 pl 2 DO 2 DI k DO k
Head of Daisy Daisy Chain
i REQ PEND
BUSY
\Z/ \Z/ 0/C
Daisy _, o 5F
in
;J T4— _t_
Ts |4
T, |4
A3 f
R E q *___)_._. Ack
[Qeq —_—a—1)
— } ,. Daisy
Q ‘ / Out

FIGURE 4.7 Module Intercommections and Circuit Details of the

Distributed Daisy-Chained Fixed Priority Arbiter.

- 4.22 -

"183Tqay pauTey)-£sTeQ AITIOTI4 POXTd oyl jo BuTWIl @°% FUNOII

__ m 300N

HIY

Id

EE— b

bay
- @ npow
\ Kyopd samol

BY

44
|/
_||£ P pb 3
+.~+£M/

N

vmﬂﬂ.& w . ¢+L _ m ﬂ |_4n# ‘ La
_ / \ / : M = u.n_o?vmwy _ o

I.N 3 2 w\w _H. //m p N
| < L m _ ' Asng

—

= 4.23 —

to the model is the lumping together of D1 and D3 into one duration. This
is an approximation, since when an idling period follows & service, the
time duration D3 is absent. However, the model behaviour will be
identical when no request occurs within a time D3 into the idling period

as shown in Figures 4.9 and 4.10.

EXACT MODEL

service D idle D3 service

request T

APPROXIMATE MODEL

service D1 D3 idle D service

Tequest T

FIGURE 4.9 No Difference in Service Timing.

EXACT MODEL

service D1 idle D3 service
|
] 1 1 1

request T

APPROXIMATE MODEL

service D D service

request T

FIGURE 4.10 Disparity in Service Timing.

= 4. 24 ~

The models will behave approximately the same because:
(1) under heavy request loading, very few idling periods will occur:

(ii) wunder light request loading, idle periods will usually be longer

than D3;

(1iii) at intermediate request loading, the difference will be slight
because D3 is wusually much smaller than the mean time to next
request.

When the above simplifications are acceptable, the general model described

in the next section can be employed.

4.4.2 Non Batched Asynchronous Arbiter Model

nth state n+1th state n~!-2th state n+3th'state
idle |D1 service ,D2 service |D2 idle
I T T 1 T
requests: | T

‘FIGURE 4.11 Simple Non Ideal Arbiter Model.

The model of a non ideal non batched arbiter incorporating non zero
inter-service times is illustrated in Figure 4.11. A time duration D1
occurs immediately a request is lodged during an idle period. Further
requests lodged during D1 are considered by the arbitrafion discipline for
service in the nextvstate. Requests lodged after D1 are considered at
the end of the folloﬁing D2 for service in the next state. At most one
request is serviced in a state. It then follows that a request will not
always be serviced in the state following the request. Also, én idling
state need not follow a state in which no request occurred. (This is not

the case in the batched arbiter model of Section 4.3.2).

- 4. 95 -

Note that the non batched discipline of the model can be completely

general and the model only describes the non ideal non batched nature of

the arbiter.

Remarks

(ij If D2= 0, a requester cannot be serviced in consecutive states.

(ii) If D1= 0, the requester first to end an idle period is serviced in
the following state.

(iii) Modelling of a time period at the start of a service can be
incorporated into the service time as described in the previous
section.

(iv) The re-request timés and service times are modelled as described in

Section 4.3.3. The service time distribution may be altered with an

offset in line with remark (iii) above.

4.5 MONTE-CARLO ANALYSIS APPROACH

Most literature concerning the analysis of arbiters other than FCFS
employ a Monte-Carlo analysis approach [B.1, H.2, K.13, S.1] due to the
apparent difficulty and limitations of a theoretical approach. The
Monte-Carlo approach involves generating random re~request and service
times to excite a model of the arbiter which simulates the behaviour in a
practical application. The mass of information generated by the
excitation is condensed into appropriate performance estimates.
Naturally, a large number of samples is necessary to obtain a good
estimate of a performance measure of the arbiter. The simulation process
is a well known and powerful tool, which can be used to obtain results and
insights when utilised properly.

The advantage of a simulation over a more formal analysis approach

is that complex models can be employed that are aimed at more closely

- 4.26 -

modelling the real world. For example, one' is no longer restricted to an
exponential re-request time distribution , and phenomena such as bursty
arrivals or a uniform distribution of arrival times could be employed.
Models can be quickly developed and coded on a computer to generate large
amounts of data. Complex performance measures can also be employed.

The advantages of a Monte-Carlo analysis can be easily abused by
simulating a problem prematurely without much thought. Large amounts of
computer time can be expended generating results of little significance
due to a possible misunderstanding of the fundamental behaviour of the
system. It is often too easy to crunch first and sort out the mess later,
when a more formal analysis may reveal simple and often enlightening
characteristics that were overlooked in the dash for numerical results.

A simulation is essentially an experimental device that generates
one data point of a performance measure every run. In order that results
be meaningful, statistical considerations should be taken into account,
such as the number of samples needed to accurately generate a point.
Often, an ex;;énéively large number of iterations is necessary to obtain
useful data, and even more to reveal relationships. Limiting results, as
parameters tend to infinity for example, may not even be possible. A
simulation cannot prove a result beyond any doubt, but can disprove a
conjecture analogous to a countgr example in mathematics. For these
Teasons simulation-may best be employed only after other more formal
approaches have been explored. It is frequently the case that once a
theoretical foundation is established, simulation can be based on that
foundation as is the case for the study of metastable failure rate of

arbiters presented in the following chapters.

— 4, 27 —

Despite all, Monte-Carlo techniques are employed in this thesis,

along with the theoretical approaches, for the following reasons:

(i) They allow verification of precise theoretical results, to give
confidence in theoretical findings and derivations.

(ii) Performance measures and disciplines too complex to be handled
theoretically can be generated.

(iii) Conjectures can be tested, for example whether a discipline has a
larger STDW than the batched version.

The results generated by the author are expensive in computation time (up

to 100 000 iterations per point) compared with the corresponding

theoretical results.

4.6 CONCLUSIONS

The various approaches that can be taken in the analysis of arbiters
have been introduced in this chapter. The limitations and advantages of
the methods have been discussed. The lack of suitability of standard
queueing theory results applied to the problem of analysing arbiters with
non ideal inter-batch/service delays and general service time
distributions has been highlighted. and the author’s alternative approach
involving the use of imbedded.Markov chains has been introduced. The
models employed in the analysis have been motivated by practical examples
of arbitration circuits. Assumptions involving requester excitation
assumptions have been discussed and defined precisely for later use in
Chapters 5 and 6. Although exponential service time distributions may
enable a simplified analysis, it has been argued this may be too
restrictive in many practical applications, and consequently general

service time distributions are allowed in the author’s analysis.

- 5.1 -

CHAPTER 5

ANALYSIS OF ASYNCHRONOUS BATCHED FIXED

PRIORITY ARBITERS

5.1 INTRODUCTION

The model introduced and defined in Chapter 4 for an asynchronous
batched fixed priority arbiter is analysed in this chapter. The aim of
the chapter is to not only analyse this class of arbiters, but also to
present the analysis technique in a manner that enables generalisation and
application to other problems. The analysis of the fixed priority non
batched arbiter of Chapter 6 employs similar techniques to those employed
in this chapter. To the author’'s knowledge the results and techniques are
new in the context of arbiters. They are also presented in [4].

In Section 5.2, the state of the arbiter is defined in terms of the
set of requests pending at a batching point. With this state definition
the model is shown in Section 5.3 to be Markovian under the requester
excitation assumptions (see Section 4.3.3). The state transition
probabilites are derived in Section 5.4 for the discrete time Markov chain
representing the arbiter. Two special cases of the general service
distribution are considered : constant and exponential. These represent
the two extremes of deterministic and completely random behaviour
(intermediate distributions known as Erlang distributions bridge the gap
[K.12]) and can be used to explore sensitivity of the model to different
service time distributions. Limiting properties, both in time (steady
state) and request loading, of the state transition probabilites are

considered in Section 5.5, where it is shown that unique steady state

- 5.2 -

probabilities exist for the states independent of the initial state. The
request loading limits highlight some interesting characteristics of
batched arbiters. Performance measures are precisely defined in Section
5.6 in terms of the steady state limiting probabilities of the arbiter
state. Request loading limits are also examined for the performance
measures. To examine intermediate request loadings between zero and heavy
saturation, a computer study is performed to calculate steady state
performance measures. Numerical results relevant to points discussed in
the chapter are presented in Section 6.6, where limiting request loading
results derived in Section 6.5 are observed in the results. Conclusions

concerning batched arbiters are presented in Section 6.7.

5.2 STATE DEFINITION

The arbiter behaviour is characterised by a sequence of batches in
time. An idling period corresponds to a zero batch. Each batch has an
associated state determined by the set of requesters serviced in the
batch (or the_set of pending requesfs at a bétching point). The state of

k

the nth batch, 8(n), 1is defined as an integer in the range O .. 2°-1,

where k is the total number of requesters. S(n) is a function of the

nth batch as follows.
Define ¥ {1, ... k} » {0,1} by
: ; p : th
1 , 1if requester h is serviced in the n
v(h) A batch, denoted h € S(n)
O ., h € S(n)
Then
k
S(n) £) v(n)2" ! | (5.1)

h=1

- 5.3 -

For example, the zero batch has state zero and the full batch has
state 2k—1- There is a one to one correspondence between the set of
requesters serviced in a batch and the state of the batch. Consequently,
set operations are used on state variables as though they are sets such as
the notation h € S(n), vwhich means requester h is serviced in the

state S(n).

5.3 MARKOV PROPERTY

The sequence of states of the arbiter model with requesters obeying
assumptions (i), (ii) and (iii) of Section 4.3.3 forms a finite state

Markov chain. That is

prdbPS(n) =11] S(n-1) = jl’ S(n-2) = j2, ..., 5(0) = jn] {(5.2)
is indepen@i%g\of j2. ey jn.
‘ S(n2) = j, ’ 8(n-1) = j, S(n) = i

1 1 1 |

I only requests]
here are
l serviced in |

| the nth batch |

FIGURE 5.1 Markov Property of Arbiter Model.

Figure 5.1 illustrates that the state of the nth batch is determined
only by requests made during the (n-—l)th batch. The probability that a
particular requester requests during the (n—l)th batch is only =a
function of the (nfl)th batch's configuration and the request rates.

This is true because the probability of a reguest is independent of the

o Bl =

requester’'s history when it has no request already pending. Any request
pending at the start of the (n~1)th batch is reflected by the servicing
of that request during the (n—l)th batch. Thus, all the information
that determines (5.2) is contained in the states i and 31. Hence, it

suffices to write prob[S(n) = i | Sin=1} = 51] as a shorthand for (5.2).

5.4 DERIVATION OF STATE TRANSITION PROBABILITIES

In order to derive state transition probabilities, some preliminary
atomic expressions are introduced with which final results can be
expressed. Firstly, the probability that requester h does not request
during the service time-of requester £ is derived under the condition

that requester h has no request pending already.

- requester h does not | Req h = 0 at the
Py request during tS(E) start of ts(e)

.A_.-w At
= J‘ fg(t)e Ah dt (5.3)
0

Consider the following conditional event: Requester h not
requesting during the service of requester 21. followed by the servicing
of requester 82 and finally a fixed time D. The probability of this

conditional event is given by:

N plty* tg+ D)
£, (tl)fé (t2)e dt,dt,
o Yo 1 2

AP b
=e fg (tl)e dt1 fe (tz)e dt2 (5.4)
0 L 0 2

- 5.5 -

The joint density function of the service times of requesters 21 and 82 is
the product of their individual service time density functions since
service times are assumed to be independent. The decomposition of (5.4)
generalises to any number of time intervals. Consider now the probability
of requester h not having a request pending at the end of D1 in a batch
with state i # 0. This probability is denoted by Q(i, h). Two cases
arise:

(i) requester h is serviced in the batch with state i (h € i);

(ii) requester h is not serviced (h € i) and hence Req h = 0 at the

start of the batch.

Figure 5.2 illustrates the definition of Q(i, h) when h € i.

R Y - I D, D,

|
T
Prob. noT Tequest
here = Q(i, h)

FIGURE 5.2 Definition of Q(i, h), h € i.

It follows that

o
-\ D At
ST e § J‘fg(t)ehhdt, if hed
2ei Y0
Q(i.h) = < 2>h
[+9]
-A, (D.+ D) -\t
e)\hl e T fe(t)ehhdt, if hei
2€iv0

where (5.5)

- 5.6 -

Hp

@ , exponentially distributed
_Rht u£+hh service time
fe(t)e
0

—Rh/ue
e . constant service time
The state transition probabilities are now derived for four cases of

S(n-1) and S(n) being zero or non zero :

]
o

Case 1: S(n-1) = S(n)

prob[S(n) =0 | S(n-1) =0] =0 (5.6)

Equation (5.6) follows from the fact that a non zero batch always precedes
and follows a zero batch. The zero batch is defined to be the idle time
between two non zero batches and two consecutive zero batches cannot
exist. Refer to Figure 5.3.
£ -5l D D t
"f5I1| r3|2lsl"

T 1
non zero batch ' zero batch

1
' non zero batch
FIGURE 5.3 Zero Batch between Non Zero Batches.

Case 2: S(n-1) =j#0, S(n) =0
-
prob[S(n) = 0 | S(n-1) = j] = hTr1 Q(j.h) (5.7)

Equation (5.7) gives the probability of the intersection of the k
independent events that each requester does not request during the

(n—l)th batch and hence a zero batch follows.

= BB L
Note that the time duration D3 is not included in the (n—l)th
batch because the nth batch is the zero batch.
Case 3: S(n-1) =0, S(n) =1 #0.
prob[S(n) = i | S(n-1) = 0] is required.
(nwl)th batch nth batch
|D3 D2:t5rt51
T 1 1 T
zero batch ; State i
| |
requests
FIGURE 5.4 Zero Batch to Non Zero Batch Transition.
Considering Figure 5.4, for S(n) =i to follow S(n-1) = 0, the first
All other

requester to end the zero batch by requesting must be in S(n).

requesters in S(n) must request within the following D3 time period.

But so that no more requesters request, the intersection must be taken

with the event that all requesters not in S(n) do not request within

D Thus,

3-

prob[S(n) = i | S(n-1) = 0]

is the first requester

h
= E {%rob[to request during S(n-1) =0 }
hei S(I’l“l) =0
remaining requesters € i T
X prob[request during D3 ‘ i) =0]}
x prob| Teduesters ¢ i do not Siard) = 0] (5.8)
P request during DB - ’

- 5.8 -

Since the events of requesters requesting first are mutually exclusive,

the summation applies in (5.8). The terms in (5.8) are shown in

Appendix B to give :

E {Rh. TT [1 _ e-thB]} . TT'emfoS

hei gi; Fe1
prob[S(n) = i | S(n-1) = 0] = £
k
) N
=1
(5.9)
Case 4: S(n-1) =j#£0. S(n)=1#0
prob[S[n) = G l S(n~1) = J]
[requesters € i request during
— prob| the (n-1)th batch and at S(n-1) = j
| least one of which before DB
(5.10)
' [requester h does not request L K]
% TT'prob‘ during the (n—-1)th batch s(El) =.J

h€i

The reason for the inclusion of the condition "at least one of which

before D3" is explained with the aid of Figure 5.5.

(n—l)th batch

D3’s existence depends on at

least one request here

N

FIGURE 5.5 Non Zero to Non Zero Batch Transitiom.

- 5.8 -

If no request occurred up to the end of Dl‘ then D3 would not be

present in the (n—l)th batch and a zero batch would follow.

The terms in (5.10) are derived in Appendix C to give :

prob[S(n) = i | S(n-1) = j]

-A. D -AD -A. D
{17 [rewme B3] - T feama-e P} Tagm ™3
hei hei heéi
(5.11)
Equations (5.6), .(5.7), (5.9) and (5.11) define the Markov

transition matrix for the batch states of the system. Notice that in all
cases prob[S(n) =i | S(n-1) = j] is independent of n and hence the
Markov chain is homogeneous. Define

P, s A srob[S(n) = 1 | S(n-1) = §] i,j=0,2%1 (5.12)

and the probability transition matrix, P, is defined by:

P £ [p;] (5.13)

5.5 LIMITING PROPERTIES OF THE PROBABILITY TRANSITION MATRIX

The probability transition matrix, P, is a non negative matrix

(i.e. all elements non negative) with unity column sums. The probability

: . T
vector of the nth' batch, p(n), represents with its i component,

pi(n), the probability of the nth batch being in state i. The

probability vector p(n) is given by :

-5.10 -

m-1
p,(n) =) prob[S(n) = i | S(»-1) = i1 * p,(»-1)
j=0
(5.14)
m—1
= E Pij " pj(h—l)
=0
where m é Zk. In matrix notation
p(n) = P - p(n-1) = P" - p(0) (5.15)

where p(0) is the initial probability vector. Furthermore, the limiting

probability vector p 1is defined as:

A lim p(n) (when the limit exists)
n-°

o
]

(5.16)

1im P%6(0) = P Lin F¥ S50} = Pp

n—x n—

Note that (5.16) shows that p 1is an eigenvector of P corresponding to

the eigenvalue of 1.

5.5.1 Principle Limiting Results as n-

Theorem 5.1: The probability transition matrix of the fixed

priority batch arbiter model, P, has a unique positive limiting
probability wvector independent of the initial probability vector,

provided ”h’xh >0 for h=1, .., k and D1 + D3 > 0.

= 8.1l =

Proof: Firstly it is shown that P is irreducible and primitive [G.1] by
showing that all elements of P2 are positive (written P2 > 0). This

follows from the theorem:

P is irreducible and primitive if and only if some power of P is

positive [G.1, p.80].

To show P2 é [pij(2)] is positive, consider :

m—-1
(2) _ E
Fig™ ™ = PiuPuj
u=1

v

Piwpwj' for some w, O {w < m1 (5.17)

since piupuj 2 0 for all i, u, j. Therefore if, for every i and j,

a W can be chosen such that piwpwj > 0 then it follows that P2 > 0.
The state w corresponds to an intermediate state between i and j as
shovn in Figure 5.6.

th
n

(n—2)th batch (n~1)th batch batch

iw

Wi State = w + State = i

o+

State = j

FIGURE 5.6 State Transition Illustrating the Proof of Theorem 5.1.

In Appendix D it is shown that such an intermediate state w can be

chosen when D1 + D3 > 0.

When D1 = D3 = 0, the full batch can never occur because all

transitions to it have zero probability (including the full batch to full

e

- 5.12 -

batch transition). This implies that P is reducible in the case of

Dl = D3 = 0, since P has an invariant coordinate subspace of dimension

2k—1 < 2k = dimension of P, consisting of all but the full batch state.

In order to study the zero inter-batch time case, the matrix, Pl,

is defined as P with the last row and column removed (i.e. without full

batch state):

I
2

P, AR i,3 -2 (5.18)

P1 has the same properties as P in Theorem 5.1. Note that P1 is a

probability transition matrix (i.e. column sums are unity) only when
D1 = D3 = 0. The following theorem is proved in Appendix D.

Theorem 5.2: The probability transition matrix P1 as defined in

(5.18) has a unique positive limiting probability vector independent
of the initial probability vector provided My >0 for
hii=jlaEes Sl S and D1 = D3 = 0.

5.5.2 Light Request Loading Limit of the Probability Transition Matrix

In this section the limiting behaviour of P as the request rates
tend to zero is examined. The manner in which the request rates tend to
zero is defined as follows :

The average request rate, A, is defined:

e L (5.19)

and relative request rates, r,. are defined:

= 5:13 =

>

e h=1,2, ...,k (5.20)
- A
The request rates are restricted in the following discussion so that all

r, are constant as A varies. From (5.5) it follows that

h
lim Q(i, h) =1 (5.21)
=0
From (5.7)
lim py. = 1, Bor Ja=1; & wess m-l (5.22)
R o :
That is, a zero batch follows every non zero batch. From (5.11) and

(5.21) it follows that:

lim P, = 0] for i,j=1,2, ..., m-1 (5.23)
xs0

From (5.9) and (5.21) it follows that:

0 , |i[>1 i.e. contains more than one requester
lim Pip = (5.24)
-0 T i={g} i.e. singleton state of requester g
Define:
& s
PO & I P (5.25)
A=0

It can be seen from (5.23) and (5.24) that

- 5.14 -

Bl peo (5.26)

and it follows that the Markov chain is cyclic with period 2. Note also
Fhat Po is independent of Dl’ D2. D3 and My -

The limiting probabilities of the 2-cycle are dependent on the
initial state with the limiting values reached after the first iteration.
In physical terms the arbiter alternates between idling and servicing one
requester. Obviously as A0, the length of the zero batch - ®@. For
small request rates compared with delays and service times, the arbiter

behaves like the limiting case.

5.5.3 Heavy Request Loading Limits of the Probability Transition Matrix

The request rates are allowed to approach infinity keeping L of
(5.20) constant for each requester. As request rates become large,
requesters lodge a new requests soon after releasing the resource. The
~limiting behaY%Qur depends on whether D1 + D3 is zero and two cases are

considered below:.
Case 1: D1 + D3 > 0.
From (5.6) and (5.7) it follows that

lim Py = 0 for j=0,1, ..., m1- (5.27)
J
A—xo

If D3 > 0, then from (5.9)

0O , if i # m-1
?];il:[p]’_O = i}) (5.28)

-
i)
+
[wh
i
g
|
—

- 5.15 -
and if D3 = 0, then from (5.9)
Tf , if i= {f}
lin pyo = | (5.29)
0 L if i #1
From (5.11) for j#0 and i #O0
0 i |i| #k 1i.e. not full state
lim p.. = (5.30)
I R | il = x
Summarising these results: for D3 >0
0O O 0
0] o
P (X+) & 1im P2 | : (5.31)
A= ’ : :
0 0
1 1]

The notation P_(X,+) needs some explanation. "X" means the argument is
> 0, and "+" means it is > O. The first argument refers to Dl’
whilst the second refers to D3. For D3 = O:

A .
P (+.0) = lim P (5.32)

A—0

In both cases the square of the probability transition matrix is the same.

[P_(X.+)1% = [P (+.0)]% = P_(X.,+) (5.33)

- 5.16 -

The limiting probability transition matrix has been reached in both
cases in (5.33). Since all the columns of the limit, Pm(X,+), are the

same, the limiting probability vector is independent of the initial
probability and is given by [O o ... O 1]T i.e., the full state
has probability one.

Case 2: D1 + D3 = 0, the full batch can never occur and the limiting

behaviour is more interesting. From equation (5.5)

1 , if h = max{&: & € i}
lim Q(i,h) = (5.34)
Ao . otherwise
and from (5.7) and (5.34)
lim po. =0 3 =20, Ly weny m-1 (5.35)
T Tl :
and from (5.161“
Tf " if i = {f}
lim Pig = (5:26)
A0 0 , if |i] #1
For i #0 and j # 0 (5.11) and (5.34) imply
1 , if i contains all requesters except

the lowest priority requester in state J.

lim p. .
A Y
0 , otherwise

(5.37)

The powers of the probability transition matrix, P_(0,0), formed from

(5.35), (5.36) and (5.37) cycle with a period of two after the third

- 5.17 -

power. The limiting probability vectors in the two cycle have all zero
elements except for two states corresponding to the full batch without
requester k and the full batch without requester k-1. The probabilities
of these states exchange after each state transition and depend on the
initial state. The physical interpretation of this result is that the
arbiter allows no time at the end of a batch for the two lowest priority

requesters k and k-1 in which to request before the batching point

immediately following their servicing. This interesting situation can be-

seen later in the numerical results for heavy request loading and small

values of D1 + D3.

5.6 PERFORMANCE PARAMETERS

It has been shown that the Markov chain model for the arbiter has a
unique limiting probability vector for finite positive request rates.
After sufficient time, the probability of a particular batch occurring
will be constant regardless of the initial state of the arbiter. From the
batch probabilities in the steady state, many usefulr performance
parameters of the arbiter can be determined which are functions of the
request rates, service times, the total number of .requesters and

inter-batch times.

5.6.1 Utilisation

Suppose the system has reached steady state with probability vector

T
p = [po’ Pl; pzs el | Pm_1] (5-38)

Suppose n successive batches are sampled and let nj (J = 0; sus,; m=l)

be the number of states = j, with

- 5.18 -

Let t. be the mean length of time of a batch with state

J
follows:
D+D+D+§1— i=1,2, ..., m1
1 2 3 M, ! o %
hej
A
tj = 1
i=0
k
L h=1

The proportion of time devoted to the state j is given by

taking the limit as n = ® of (5.41) gives

n.
t. lim El
T, 4 lim 7D = — 2
J %0 J 1'1i
z ti lim ;1_
i=0 e

Equation (5.42) suggests defining the following utilisation

(5.39)

j. defined as

(5.40)

(5.41)

(5.42)

parameter:

= B8 ~

tip.
A Al
Uj = (5.43)

i=l
Similarly the proportion of time spent servicing requester h, PROP(h),

is defined by:

i such that
hei

m-1
2 Pyts
i

PROP(h) 4 (5.44)

The idling time for the system is defined as the proportion of time not

spent servicing requests:

k
1 -) PROP(h) (5.45)
he1

e

IDLE

5.6.2 Mean Waiting Time for Each Requester

The wéiting time for requester h is the time from when requester h
requests to when requester h receives the resource. In Appendix E an
expression is derived for w(i, j. h), the mean waiting time for
requester h given that S(n) =i follows S(n-1) = j, where requester h
is serviced:during state i. The unconditional mean waiting time for

requester h, MWT(h), can then be expressed as:

- 5.20 -

m—1
MWT(h) = lim)) W(i.i.h) prob[S(n-1) = j, S(n) = i | h € S(n)]
N j-0 i such that
hei
(5.46)
m—1 ..
W(i,j.h) = p.. * p,
3 E 2 (1.3.h) - p;s * P,
J= i such that 2 Py
hei u such that

h €u

5.6.3 Metastable Reliability Performance

The aperture model for metastable behaviour of synchronising
elements, such as flip—flops and batches, discussed in Section 3.6.3 and
Section 3.7.5 is employed in the metastable reliability analysis of this
section. The analysis is applied to the distributed daisy chained batched
arbiter described in detail in Section 4.3.1, however, the technique can
be applied more generally to other implementations of batched arbiters.

The basic synchronising element of the arbiter module shown in

Figure 5.7 is_the latch.

?
METASTABLE ‘q<:::::

Q STATE

FIGURE 5.7 Aperture Model for a Latch.

- 5.21 -

The latch is transparent from D to Q when E 1is low, and the value of
D 1is stored when E goes high (disabled). When the latch is in the
process of being disabled an aperture event occurs. Referring to
Figure 5.7, should the data input of the latch change during the aperture
(of width At) then the outputs Q, Q will be indeterminate for a time
duration exceeding "F. The aperture event is the presentation of the
aperture to the data and not the actual occurrence of a data change within
the aperture. The exact position of the aperture with respect to the E
rising edge is not critical in the analysis, with the width At
determining the probability of an indeterminate output lasting at least a
time T. The aperture width is a function of device dependent parameters
and T as defined in equation (3.27).

For the metastable reliability amalysis, failure of the arbiter is
assumed to correspond to an Ack output being sensitised to a metastable
latch output. (The same concept of sensitisation was employed in studying
the combinational circuit of the redundant synchroniser in Section 3.7.5).
Obviously, this concept of failure may not always correspond to external
perceptions of failure of the arbiter circuit, such as simultaneous Ack
signals asserted or ﬁndefined Ack signals. It is conceivable that an Ack
output sensitised to a metastable latch may be interpreted as a valid and
harmless O logic state by some devices most of the time, but this
certainly cannot be guaranteed nor should be expected.

The definition of failure adopted here is a necessary condition for
metastable behaviour to cause undesirable output disturbances, and is
useful in worst case design and reliability estimation. The "worst case”
situation is depicted in the timing diagram of Figure 5.8, which shows a
request with priority higher than all pending requests occurring within
its latch's aperture at a batching point - the only time aperture events

can occur.

- 5.22 -

last req
of previous batch

common /

line

aperture
/ event

Ror s

Ack

FIGURE 5.8 Metastable Failure of the Batched
Daisy Chained Arbiter.

- 5.23 -

Because this requester's latch has a sensitised path to both Ack and
Daisy Out signals, failure of the arbiter can result. The key point is
that the request must be of sufficient priority so that its occurrence (at
the batching point) bas immediate impact on the decision as to which
request to acknowledge next. .A low priority request, below pending
request priorities cannot cause the arbiter to change its next decision.
The arbiter is sensitised after the allocated metastable settling time,
approximately Ty only to latches of priority higher than all pending
requests. A low priority metastable latch will be sensitised only after
all higher priority batched requests have completed service, but this
necessitates an extremely long metastable duration which is of
insignificant probability due to the exponential dependence on settling
time. Thus, the aperture events associated with modules of priority lower
than existing requests are justifiably ignored in the analysis.

The fixed priority batched and non batched arbiter models described
in Chapter 4 are ideal in the sense that they implicitly assume that
metastable fa&iﬁre never occurs. The metastable failure rate is derived
from the ideal models by calculating the mean rate at which aperture
events occur and the probability requests occur within these apertures.
It is assumed in the analysis that all latches have identical
synchronising properties and allowable settling times, approximately To:
and hence all aperture widths, At, are identical. In practice, variation
may occur between synchronising elements and this could be conceivably
accounted for in the analysis if the required parameters were known
a priori. This is not usually the case and a worst case estimation may be

obtained by using the worst synchroniser parameters in all latches.

= 524 —

The positioning of the aperture with respect to the batching point
deserves some comment. From the functional working of the batched
arbiter, the batching point is the exact idealised point where all batches
sample their requests. If a request is asserted just prior to the
batching point, it is batched, but just after the batching point the
request is not registered until after servicing of the batched requests.
From the aperture model as described in relation to the redundant
synchroniser in Section 3.7.5, an idealised synchronising element would
have an aperture "point” (i.e. zero aperture width) where the batching
point would occur.

To model the moré realistic metastable susceptible batch, the
aperture interval should contain the batching point. Since aperture
widths are very small in practice compared with circuit delays (usually

o

™ picoseconds for nanosecond gate delays), the exact position of the
batching point within the aperture is inconsequential as will be seen

below. For convenience in the analysis, the aperture is placed just after

the batching point as depicted in Figure 5.9.

nth (n+1)th batch

batch At

batching
point

FIGURE 5.9 Assumed Position of Aperture in the Analysis.

One may argue that the batching point should be in the centre of the
aperture, depicted in Figure 5.10, as suggested by the argument that half
the metastable states resolve to each stable valid logic state
"eventually"” and the idealised batch is the limit as 7=0 of the non

ideal latch.

batching
point

FIGURE 5.10 Central Aperture Position.

The following is a comparison of the two models: Suppose
requester h is last serviced a time th before the batching point. The
probability of requester h lodging a request within the aperture of the
first model, Figure 5.9, -is denoted P; and the corresponding probability

for the central aperture position model model, Figure 5.10, is denoted

Py -
P = e_khth {1 = e_hhAt) (5.47a)
;;.; e_Rh(th ; %EO (1 - e—hhAt) (5.47b)
(Equation (5.47b) assumes ty 2 %E vwhich can be guaranteed by ensuring
D3 2 %E- with very little error due to the smallness of At).
Since the mean time between requests, %—, is much larger than half

h

the aperture width in practice then

RhAt
2

“Z = = 1 (5.48)

- 5.26 -

That is the probability of metastable failure under both models is almost
identical. (The ratio of probabilities is good comparison only for
Py. Py << 1 which is the case here).

The metastable failure rate is now derived, based on the observation
that aperture events of significance occur only at the start of non zero
batches and in modules with priority higher than all pending requests.
Firstly, apert(i) is defined, where i is the state of the batch

following a batching point.

E?\ , 1 #£0
i h
apert(i)} = ¢ héi (5.49)
h < hp(i)
0 , 1=0
where hp(i) is the highest priority requester in state 1i. The value

apert(i) represents the sum of request rates of those requesters which
can cause failure (with metastable duration > 72) at the beginmning of
state "i. The probability of no failure at the beginning of state i is
given by

B (i) = e apert(i)At (5.50)

nf
where

_2

At =T, e T (5.51)

Using the same notation as in Section 5.6.1, the number of batches with

5 . . 5 :
state i1 per unit time, Ri is given by

- 5.27 -
n 24
Ri === (5.52)
E n.t.
Jd J
.0
Taking the limit as the number of samples increases
oy
lim —
BoA e B e B (5.53)
i i m-1
n—o n,
E t. lim i
. J n-—¥xo
J..‘—.‘
From time O to t the probability of no failures, P_¢ assuming
independence of failures, is given by
m-1 R.t
= p o (1)] 7
Pns 4 Pnf
i=1
= m-1
= 2 apert(i)At Ri t
L ik A (5.54)

The independence assumption is equivalent to assuming that when a latch in
a module is disabled the metastable generation mechanism is memoryless,
that is, independent of the previous latching history. From experimental
evidence it is found that this may not be precisely accurate [R.2].
Equations (5.54) and (5.53) suggest defining a normalised metastable

failure rate performance parameter for the circuit, NMFR, given by

- 5.28 -

m—1
z apert(i) P,
A i=1
NMFR = o (5.55)
t
2 JpJ
j=

The equivalent Poisson failure rate of the arbiter in steady state can be
thought of as At.NMFR. The NMFR is normalised with respect to the
aperture width At to give the failure rate a measure of independence of
circuit parameters and to represent the intrinsic synchronisation
performance of the arbiter circuit.

The occurrence of‘ aperture events is linked to the arbitration
discipline as well as the implementation of the discipline. One can
identify possible aperture events by locating points where request timing
has an immediate impact on the allocation of the resource. In the above
example it was seen that high priority requests occurring at batching
points can marginally trigger latches within the circuit that have direct
bearing on the decision as to which request to service next. Aperture
event locations are identified in other disciplines in Chapter 8, and
shown also to be dependent on the circuit implementation in Chapter 7

where clocked batched arbiters are discussed.

5.6.4 light Request Loading Limits of Performance Parameters

Firstly, the steady state probability vector in the limit as the
request rates approach zero is determined. The limit is taken with the

ratios of request rates constant as defined in (5.20).

N-1
g . : ; |
lim p = lim lim p(n) = lim lim % z p(n)

A0 Rl pigm A0 oo N
1‘1=0

- 5.29 -
N-1
= lim lim N E p(n)
N=we 20 n=0
T r T T T
1 1 T8 °3 k '
2 L§ L 5h 5% 0. 55 0, .ol 55 0, 0, ..., o] (5.56)

The steps in (5.56) are justified in Appendix F, by showing

N-1 N-1
lim p(n) = lim N 3 p(n), and lim N 2 p(n) converges uniformly as
-0 N n=0 N—x °° n=0
A=0. Equation (5.56) states that only the zero batch and singleton
batches can occur in the light loading limit. The probability of a

singleton batch is half the request ratio of its requester, with the zero
batch probability being %z Physically, the arbiter alternates between
idling and servicing one requester. Note, however that the mean duration

of a zero batch approaches infinity as the request rates approach zero,

and the proportion of time spent in batch j, Uj’ is given by

O ’
1

Itk
oo

lim U, = { (5.57)

A=0

and the proportion time given to requester h, PROP(h) is given by

lim PROP(h) =0 (5.58)
A=0

It follows from Appendix E and (5.56) that the limiting mean waiting time

for requester h, is, as expected

lin MWT(h) =Dy + D, , h=l, ..., k (5.59)
A=0

Also, the limiting normalised metastable failure rate, NMFR, from

- 5.30 -

(5.55) and (5.56) is

lim NMFR = O (5.60)
A=0

5.6.5 Heavv Request Loading Limit of Performance Parameters

Two cases arise: (1) D1 + D3 >0 (2) D1 + D3 = 0. The limit as
request rates approach infinity with fixed ratios as defined in (5.20) is

an idealisation of a heavily loaded request situation.

Case 1l D, +D, >0

1 3
The limiting probability vector, lim p, is given by
(justification given in Appendix F)
; T '
1in p=[0; 0 .o 0y 1] (5.61)

A=

where the limit is taken as in Section 5.5.3. From (5.61) and (5.43}:

1 ., j = full batch
lim U, = (5.62)
Ao 0 ., otherwise
and from (5.61) and (5.44):
1
Ho
lim. PROP(¢&) = (5.63)

A kl
D1+D2+D3+§ &
=1 &

Equation (5.63) is expected if every requester is serviced in turn and

receives per batch the time it takes to be serviced.

- 5.31 -

The limiting MWT(£) is obtained from Appendix E and (5.61)

lim MWT(£) = lim W(m-1, m-1, &)
A Ao

k
1
D, + D, +D+§,J,g (5.64)

g;ﬁé

That is, every requester requests straight after being serviced and
waits for every other requester to be serviced and the inter batch delays
Dl’ D2 and D3. This ‘is not the maximum mean waiting time for low
priority requesters, since under lighter loading conditions these
requesters may not request in time for the next batch and hence have to
wait for an additional batch of requesters to be serviced before being

serviced at the end of the batch after.

The limiting metastable failure rate is given by

At apert(m-1)

lim NMFR = e =0 (5.65)
A0 m—-1
Case 2 D1+ D3= 0
N-1
. . : : : 1
limp = lim lim p(n) = lim lim N E p(n)
A0 A= o A= N=o
n=0
N-1
= lim lin 3) p(n) (5.66)
N A=
n=0
_ L1 T
= [@ Ox wws 5 %5 O]
T
k-1 k

- 5.32 -

Where k-1 is the state with all requesters serviced except k-1.

N-1 :
Uniform convergence of lim N 2 p(n) as A > ® is shown in Appendix F.
N0 n=0

Equation (5.66) can be interpreted physically by observing that the
arbiter alternates between the batch servicing all but the lowest priofity
requester and the batch servicing all but the second lowest priority
requester. This occurs because the last requester service in a batch is
unable to request in time to be included in the next batch.

It follows from (5.66), and (5.43) that

—%— h#k and j # k-1
1
lim PROP(h) = - : (5.67)
P
——%r- ., h=%k or h = k-1
L Mh'1

k-2
where T1 = 2{52 + E 1 + 1 + L
g=1 “g M1 Hx

Note the unfairness in (5.67) for the two lowest priority requesters, who
receive half the servicing other requesters receive.

It follows from (5.66), and Appendix E that

T

e Bk and Bl
lim MWT(h) = (5.68)
A—xo

Tl—-lp; bl o b=kl

where T1 is defined in (5.67).

- 5.33 -

The limiting metastable failure rate is given by

lim NMFR = 0 ko> 2 (5.69)
A=

Note that the metastable failure rate is zero at both loading extremes

which suggests a maximum exists at moderate request loading.

5.7 OOMPUTER STUDY AND NUMERICAL RESULTS

Much of the interesting and relevant behaviour of batching arbiters
occurs between the limiting extremes of light and heavy request loading.
.This behaviour may best be examined using numerical computer techniques
since the theoretical expressions are not easily interpreted for

intermediate request rates.

5.7.1 Assumptions and Parameter Selection

The following simplyfying assumptions are made in the computer
study:
=u . h=1,2, ..., k (5.70)

Hh
A = A , h=1,2, ...,k (5.71)

All requesters are assumed to have identical request and service
statistical characteristies, with two cases considered for service times:
constant and exponential distributions.

The inter-batch time durations Dl' D2 and D3 are selected to
correspond approximately to an arbiter design such as the decentralised

batching arbiter presented in Section 4.3.1. A .typical TTIL design for

this arbiter might be : common line delay = 25 nsec; T = 20 nsec;
To = 50 nsec; Ty = 50 nsec and T, = 50 nsec. From the timing diagram

in Figure 4.3 and typical TIL delay times, approximate values for Dl’ D2

and D3 are

- 5.34 -

D, = 110 nsec D2 = 110 nsec Dy = 90 nsec (5.72)

Within the framework of the batching arbiter model the relative
values of Dl' D2 and D3 to the mean service time &- are all that is
needed and not absolute values. Consequently, the unit of time adopted
for all results will be the mean service time %:

Typical service times vary with applications. For example, an
arbiter for resolving multiple interrupts may result in typical service
times not shorter than 150 usec. The values of Dl' D2 and D3 could
then be approximated as zero in this application. Another example is that
of a bus arbiter. Typically, a bus transaction may be as short as
500 nsec, giving D1 = D2 = D3 £ D.2. To show the effect of large
inter-batch times in relation to mean service times, the case of
D1 = D2 & D3 =1 1is also consideréd in the numerical results.

The range over which the mean request rate varies is chosen to cover
most conceivable applications. In a 5 requester arbiter with
D1 = D2 = D3 =0, for example, each requester can be coordinated to
request in an orderly fashion (deterministically) to tie up the resource
continuously with 0.25 requests per mean service time. In the non
deterministic situation of the arbiter model frandom requests), request
rates above 0.25 tend to saturate the arbiter. It would be expected that
a system desiger would not allow request saturation to be too heavy due to
the resulting inefficiencies incurred due to requesters waiting. A range

from O to 1.5 requests for mean service time is considered adequate in the

numerical results.

- 5.35 -

5.7.2 Proportion of Time Allocated to Each Requester

Graphs 5.1, 5.2, 5.3, 5.4 and 5.5 show the proportion of total time
allocated to servicing each requester, PROP(h), of a 5 requester arbiter.
Higher priority requesters receive more time than lower priority
requesters in all graphs. However, for request rates less than 0;25
requests/service time, all requesters receive approximately equal
proportions of time. Hence, the batched arbiter is fair, as far as time
allocation is concerned, when request rates are less than 0.25
requests/service time.

A comparison is made between results from exponentially distributed
and constant service times in Graphs 5.1 and 5.2. It can be seen that
there is little difference in the results for the two service time
distributions. The exponentially distributed service time results tend to
saturate at slightly higher request rates. This can be generally observed
for all performance measures even with different values of Dl' D2 and
DB' and can be explained rather crudely by noting that greater variability
introduced into the request service cycle results in a more random service
ordering. This randomness tends to favour lower priority requesters and
requires higher mean request rates to produce a given level of saturation
in the arbiter. One could take the extreme case of deterministic
re-requests times and service times as an example with an ideal batched

arbiter (Dl = D2 =D, =0). It is clear that for A > 0.25 the arbiter

3

is completely saturated with

0.25 , 1<h¢3
PROP(h) = (5 73)
0.125 , h=4or5

As randomness is introduced into request or service behaviour, the request

rate necessary to produce a given level of saturation increases.

- 5.36 -

In Graphs 5.1 and 5.2 where D1 = D2 = D3 =0, the two lowest
priority requesters 4 and 5, receive approximately half the servicing that
the others receive for heavy requests loadings, as predicted in the
heavily loaded limits discussed in Section 5.6. Note that this effect
becomes less pronounced as D1 + D3 increases as shown in Graphs 5.3 and
5.5, In fact in Graph 5.5, for large values of D1 + D3 and request
rates the arbiter distributes the resource equally amongst the requesters,
due to sufficient time being available at the end of batches for
re-requesting.

In all cases, the batched arbiter only displays significant time
allocation unfairness for request rates above 0.25 requests/service time
which corresponds to full utilisation when deterministic request rates and
service times are applied.

Graphs 5.3 and 5.4 show a comparison of results from the Markov
analysis and an independent Monte-Carlo simulation1 with 20,000 requests
per point. The two sets of results agree within statistieal variation of
the Monte-Carlo simulation, and provide a degree of confidence in both the
analysis techniques. This technique of validating analytical methods has

been employed throughout this thesis and limited examples only are

presented.

1A brief description of the Monte-Carlo simulation is given in Chapter 8.

PRAP (h)

- 5.37 -

PROPORTION OF TIME FOR EARCH REQUESTER

S requesters, 01=0.00 D2=0.00 D3=0.00
constant service times

0.3

Sg.o 0.5 1.0 1.5

request rate (requests/mean serv. time)

GRAPH 5.1

PROP (h)

- 5.38 -

PROPORTIEGN OF TIME FOR EARCH REQUESTER

5 requesters, D1=0.00 D2=0.00 03=0.00
exponentially distributed service times

a.2

a, 1

So0.0 0.5 1D 1.5

request rate (requests/mean serv. timel

GRAPH 5.2

- 5.38 -

PROPORTION OF TIME FOR EACH REQUESTER
5 requesters, 01=0.20 D2=0.20 03=0.20

conzstant service times

3 - ,
E—— req. 1
B——— reg. 2
A--- reg. 3
+— — regq. 4
¥-—-— reg. 9

PROP (h)

©p.0 0.5 1.0 1.5

request rate (requests/mean serwv. t 1mel

GRAPH 5.3

- 5.40 -

PROPORTION OF TIME FOR EACH BEQUESTER

Batched fixed priority, 5 reguesters, 0!=0.20 D2=0.20 03=0.2
Constant service times, Monte-Carlo 20000 reg/point

[

o ' ; -
—— req. 1
&——~=- req. 2
A--- preq. 3
+— — req. 4
Xorme peg. 5

proportion of time for each requester

S0.0 0.5 1.0 : 1.5

request rate (requests/mean serv. time)

GRAPH 5.4

PROP (h)

T — = = _ G e TR

- 5.41 -

PROPORTION OF TIME FOR ERCH REQUESTER
5 requesters, 01=1.00 D2=1.00 D03=1{.00

constant service times

m
g T
B——— req. 1
(B pigiq, 2
A--- reg. 3
4+ = reg. 4
Mo prmay, 9
(4]
g 4

Sp.0 . 0.5 1.0 1.5

request rate (requests/mean serv. time)

GRAPH 5.5

- 5.42 -

5.7.3 Mean Waitine Time for Each Requester

Graphs 5.6, 5.7, 5.8, 5.9 and 5.10 show the mean waiting time,
MWT(h), plotted against mean request rate, for each requester in a 5
requester arbiter. In all plots a higher priority requester has a shorter
mean waiting time than a lower priority requester.

The relative differences between requesters for mean waiting times
is more pronounced than results for proportion of time seen in the
previous section. For example, a range of over 100% occurs at 0.95
request/service time. If fairness is measured in terms of waiting time,
the batched arbiter may not be considered fair for all request rates_less
than 0.25 request/service time. Notice the difference in fairness
conclusions baséd on proportion of time allocated and those based on mean
waiting time. The difference can be explained by observing that large
differences in waiting times can occur when requests occur simultaneously
even though equal proportions of time are allocated to the requesters by
the arbiter. ‘The mean waiting time performance parameter is more
sensitive to contention amongst requesters than the proportion 6f time.

In Graph 5.6 where D1 = D2 — D3 =0, the two lowest priority
requesters are again seen to be disproportionately disadvantaged under
heavy request loading conditions, in line with previous remarks in
Section 5.6.5. Except for large inter-batch times as in Graph 5.10, it
can be concluded that the batching arbiter displays considerable bias
towards high priority requesters in terms of waiting time in moderate to
heavy request loading condition. In Graph 5.10, the larger inter-batch
times allow all requesters time to re-request before the next batching

point under heavy request loading.

- 5.43 -

Numerical results in Graphs 5.7 and 5.9 compare constant and
exponential service time distributions. The effect of exponential
distribution can be seen to be a slight lowering of contention compared
with constant service times. The Markov analysis is validated against
Monte-Carlo simulation in Graphs 5.7 and 5.8, where excellent agreement

can be seen again.

5.7.4 Metastable Failure Rate

The graphs in Graphs 5.11, 5.12, 5.13 and 5.14 show the normalised
metastable failure rate, NMFR, for batched arbiters with 2 to &5
requesters. Each arbiger has a peak failure rate corresponding to a
request rate near the onset of saturation (2 1/(k-1) request/service
time for a k requester arbiter). The peak value occurs when the arbiter
is resolving maximum contention between requests. At very heavy request
rates, few requests occur at the beginning of a batch where aperture
events occur, since batches are long and requesters request soon after
releasing the resource. Requests are serviced in an orderly round robin
fashion and little arbitration synchronisation occurs.

The effect of increasing Dl’ D2 and D3 is to reduce the
metastable failure rate, as can be seen in Graphs 5.12, 5.13 and 5.14.
(However, this is not recommended as a technique for improving reliability
- this can be better achieved by increasing the metastable settling time
72).

request rates, hence aperture masking effects occur for smaller request

Increasing D2 has the effect of saturating the arbiter for smaller

rates reducing the failure rate. Increasing D1 + D3 allows requesters
more opportunity to request before aperture events at the beginning of the

next batch, increasing the probability of aperture masking by high

- 5.4 -

priority latched requests and also reducing the number of unlatched
requests which could possibly have given rise to an aperture event.

Notice that the failure rate of a two requester arbiter with
D1 + D3 = 0 is unbounded with increasing request rates (see Graph 5.11).
This is because every non zero batch is singleton and so an aperture event
occurs on aﬁerage at the beginning of every second batch. The metastable
failure rate is then proportional to the request rate when saturated.

Exponential service times are examined in Graph 5.14 which is to be

compared to Graph 5.13. Again a slight drop in contention is observed for

a given request rate.

MHT (h)

- 5.45 -

MEAN WAITING TIME FOR EACH REQUESTER

5 requesters, 01=0.00 D2=0.00 D3=0.00
constant service times

B req. 1
G~ pEg. 2
A--- reg. 3
M = e, 4
Hom—— preg, 5
e -
z"ﬁgﬁ*)ﬁ
o
>
T
A]
/ 5
%
/

0.0 0.5 1.0 1.5

request rate [(requests/mean serv. time)

GRAPH 5.6

MHAT (h

- 5.46 -

MEAN WAITING TIME FOR EARCH REQUESTER
5 requesters, D1=0.20 D2=0.20 D3=0.20

constant service {imes

[<]
B——— req. 1
G-—~—=- reg. 2
A--- reg. 3
d— — red. 4
Meem—e— red. 35
o 4
o 4
0.0 0.5 1.0 1.5

request rate (requests/mean serw. time)

GRAPH 5.7

- 5.47 -

MEAN WARITING TIME FOR EACH REQUESTER

Batched fixed pr*uor‘sfg, 5 requesters, D1=0.20 D2=0.20 D3=0. 2|
Constant service times, Monte-Carlo 20000 reg/point

[~}
B e]
(Sroseie Pk, 2
g A-=- reg. 3 1
= = Fag, 4
‘ e - 5
j G——== gll FeY
w _——'?""—:{
K
a‘/#‘"—
P
V] ’
£ . 4 x/ J
= -~
- - i e
o)‘/ g j
& / "
= Pl
+ "ﬂJ / ,..-—‘——-4-__-"
8 {7(/ -.-:—...‘:--A---‘-“""‘
3 / / ‘.--_ - = & T
c {
G
[V] m
£
o™
0.0 0.5 1.0 1.5

request roate (reguests/mean serv. time)

GRAPH 5.8

MHT (R

o .
B0—— reaq. 1
e . ' T
I Y
S e, &
Moemmnes PBHe D

“o.0 0.5 1.0 1.5

- 5.48 -

MEAN WRITING TIME FOB EARCH BEGUESTER
5 requesters, D01=0.20 02=0.20 D3=0.20

exponentially distributed service times

*____*__.,..)‘----J

request rate (requests/mean serv. time)

GRAPH 5.9

MHT (h)

- 5.48 -

MEAN WAITING TIME FOR EACH REQUESTER

5 requesters, D1=1.00 D2=1.00 D3=1.00
constant service times

¢ =]
w
-
1
&——- regq. 2
A--- preg. 3
o +— — req. 4
Y--—-— reg. 9
S50 0.5 1.0 1.5

request rate (requests/mean serv. time

GEAPH 5.10

NHFR

- 5.50 -

NORMALISED METASTABLE FAILURE RATE
2 T6 S REQGUESTERS, D1=0.00 02=0.00 D3=0.00

constant service times

o
o
<1
——— 2 regs
&—~-3 regs
[=]
o
o
[o=]
-
1=
[=]
(2]
S
8 T — >
o —— ——ty
S 0.0 0.5 1.0 1.5

request rate (requests/mean serv. time)

GRAPH 5.11

NMFR

- 5.61 -

NORMALISED METASTABLE FAILURE RATE
2 T0 5 REQUESTERS, D1=0.20 02=0.20 D3=0.20

constant service times

(=]
@
o
B—— 2 regs
& ——= 3 fegs
&--- 4 regs
4+— — 5 regs
[=]
<]
d-
[=]
-
o
[=]
o™
a’-
E 4_5
~—
--e____"-
" e
. a i
= — — E

request rate (requests/mean serv. time)

GRAPH 5.12

NMFR

a.as

a4

a.03

a. aa

- 5,52 -

NORMALISED METASTABLE FAILURE RATE
2 TG 5 REGUESTERS, D1=1.00 D2=1.00 03=1.00

constant service times

B— 2 reqgs
@-——-3 regs
A--- 4 regs
4+— — 5 regs

r — oy _'r-t -_;'L- - m:-‘-—-s
0.0 0.5 1.0 1

request rate [(requests/mean serv, timel

GRAPH 5.13

3

.5

NMFR

0.as

0.04

Q.03

— 5, B3 —

NORMALISED METASTABLE FAILURE RATE
2 T@ 5 REGUESTERS, D1=1.00 D2=1.00 D3=1.00

exponentially distributed service times

O—— 2 regs
©-——-3 regs
A--- 4 regs
+— — 5 regs

rigss

+ ! .1‘"\

o pp s

a8

request rate (reguests/mean serv. time)

GRAPH 5.14

R
+-___ - - LF I -9

—~— LA -__4

0.5 1.0 1.

- 5.54 -

5.8 CONCLUSION

This chapter has presented theoretical and numerical results on the
performance of fixed priority batched arbiters. The modelling and
analysis presented has been shown to give results of practical interest
for computer system designérs. Particular attention has been given to
studying the failure rate of the arbiter due to metastable behaviour.
Factors which affect this failure rate have been identified, such as
settling time, module masking and request rates. A maximum failure rate
has been shown to exist, corresponding to maximum request contention and
zero inter-batch times.

In the theoretical and numerical utilisation results, an important
feature of fixed priority batched arbiters has been highlighted : the two
lowest priority requesters receive approximately half the servicing
compared with other requests, under heavy loading and small inter-batch
times. Another feature which may apply more generally than to batched
arbiters, is that the "fairness™ of the arbiter depends very much on the
criterion for assessment. In terms of proportion of time each requester
received, the arbiter is fair up to the saturation levels of requesting.
However, in terms of relative mean waiting times for requesters, the
arbiter is not fair for even moderate request loadings. Thus, for
throughput applications the arbiter allocates the resource fairly but not
for applications sensitive to access times of the requesters. In all
cases batched arbiters have bounded waiting times independent of request

loadings - a property fixed priority non batched arbiters lack.

- 6.1 -

CHAPTER &

ANALYSTS OF NON BATCHED FIXED PRIORITY ARBITERS

6.1 TINTRODUCTION -

The previous chapter presented an analysis of batched fixed priority
arbiters where state transitionsrare definéd to occur at batching points.
Non batched arbiters arbitrate béfore each service, and state transitions
are defined at these points. Apart from this difference, the analysis of
non batched arbiters presented in this chapter is similar to the analysis
of batched arbiters, and the presentation follows the structure of the
previous chapter in a more condensed fashion. The model and requester
excitation assumptions can be found in Chapter 4, Section 4.4.

The analysis presented. in this chapter is new and has not, to the
author’'s knowledge, appeared elsewhere. Although the analysis is
restricted to the fixed priority discipline, the technique is
generalisable to disciplines with a Markov state representation as
discussed in Section 4.4, by adding the discipline state as another
dimension of the request state.

The organisation of the chapter is as follows. In Section 6.2 the
state of the fixed priority arbiter model introduced in Chapter 4 is
defined precisely and shown to lead to a discrete time homogeneous Markov
chain. The transition probabilities are derived in Section 6.3 and
limiting results considered in Section 6.4, where the Markov chain is
shown to be irreducible and primitive and thus, unique steady state
probabilities of the states exist, independent of the initial probability
vector. From these steady state probabilities, performance measures and
their limiting values are derived in Section 6.5. These measures will be
seen to apply directly to disciplines other than fixed priority. The

chapter ends with computer results and conclusions.

- 6.2 -

6.2 STATE DEFINITION AND MARKOV PROPERTY

state: S(n) = {} S(n+1) = {1,2} S(n+2) = {2} S(n+3) = {}
idle D service 1 D service 2 D idle
P 1 2 1 2
]] i 1] i
requests T 1
1 2

FIGURE 6.1 State Definition Example.

The regeneration points of the imbedded Markov chain occur at the
start of each service and idle period (i.e. end of each Dg). an example
of which is shown in Figure 6.1. The state of the Markov chain is defined
to be the set of pending requests at each regeneration point. The
corresponding integer representation for the set of pending requests as
defined in Section 5.2 is wused interchangeably with the set
representation.

The Markov property of the sequence of states follows from the
 observation that the probability of the next state is dependent only on
the set of pending requests at the start of the previous state and those
requests occurring during this state (which are dependent only on the
state composition due to the memoryless property of the re-request time
distributions). The state transition probabilities are time independent

and so the Markov chain is homogeneous.

- 6.3 -

6.3 STATE TRANSITION PROBABILITIES

The derivation of state transition probabilities is similar to that
of Section 5.4 and only brief explanations are given in this section.
Firstly, some notation is introduced:

For a non zero state j:
hp(j) é highest priority requester € j (6.1)

Q(j.-h) 3 prob(requester h has no request

pending at the end of the state J)

[A D © At
e "°2 J f(t)e P9 nej
o &
=7 =MD, (6.2)
e . h=g
Lo . . hejN\ {g}

where g = hp(j)

~-and j \ {g} 1is state j without requester g.

Note that a request h pending at the start of the state j and not
serviced during the state j, is assumed to be pending at the end of the
state j giving Q(j. h) = O.

For the constant service time of

1.
Ng

'El:j?'

0 -\t
I £ (t) e ™ dt = e © ' (6.3)
o &

and for exponentially distributed service times with mean %—:
g

Iy B (6.4)

- 6.4 -

The state transition probabilities are given by

TT (1 - Q(i.h) TI Q(§.h) . i#0
hei he¢i
(6.5)
-A D -A.D
=1) PpTT G-e BN T e !
1 g€i fei
. h€i
g#h i=0
k
)N
£=1

where a product of no terms is 1 and a sum of no terms is O.

6.4 LIMITING PROPERTIES OF THE PROBABILITY TRANSITION MATRIX

This section examines steady state limiting ©behaviour and
light/heavy request loading limits of the probability transition matrix.
Again, results-presented here parallel the corresponding results for the

batched version and detail is kept to a minimum.

6.4.1 Steady State Limiting Results

Theorem 6.1 The probability transition matrix, P, of the fixed
priority arbiter model has a unique positive limiting probability
vector independent of the initial probability wvector provided
M, hh >0 for h=l, .., k and D1 + D2 > 0.

The proof of Theorem 6.1 can be found in Appendix G. The case of

D1 + D2 =0 is treated separately since the full state (all requests

- 6.5 -

pending) cannot be reached and P is then reducible. A new matrix Pl'
is defined when D1 + D2 =0, as P without the full state. Of course,

P1 is a probability transition matrix only when D, + D, = O.

1 2

Theorem 6.2 For D1 + D2 = 0, the probability matrix Pl‘ has a
unique positive limiting probability vector independent of the
initial probability vector, provided My Kh >0 for h=1l, .., k.

The proof of Theorem 6.2 is presented in Appendix G.

6.4.2 Light and Heavy Réquest Loading Limits

As usual, limits are taken with fixed request rate ratios as defined

in Section 5.5.2.

0 . hej\ {bp(j)}
=0 1 ; otherwise
(6-6)
From (6.5) and (6.6) it follows that

1, 5121 . 1i=3\ {hp(i)}
1i o g = . i =0 , i =1 , € i
U= By Ty i [1] g €i

0 . otherwise
(6.7)

where rg is defined in (5.20).
The state transition is deterministic when the state contains more
than one requester. That is the next state consist of the remaining

requests after the highest priority requester is serviced.

- 6.6 -

After at most k transitions a 2-cycle is reached where the arbiter

alternates between zero states and singleton states as follows. Let the
th

probability vector of the n state be p(n) = [pi(n)]T then for

n = 2w, some integer w, n > k.

Ll = * =1) "Ik
nr, i={g}.e
pi(2w) =3 1l-a , 1i=0
0 . otherwise
(6.9)
where
a=) p,0) (6.10)
|i|odd
Note the dependence of (6.10) on the initial probability vector.
The heavy request loading limits are considered below.
1 D2 =0 , h =hp(j)
Lim' ~Q{ j.h) =
Ao 0 otherwise
(6.11)
Four cases are now considered for Dl’ D2: (i) D1 ; D2 2 B, (ii)
D1 > 0, Dz =0, (iii) D1 = 0, D2 > 0, (iv) D1 = D2 = 0. Equations

(6.12), (6.13), (6.14) and (6.15) are obtained from (6.11) and (6.5).

(1) ¥Dppl >0

{ 1 i i = full state

0 2 i # full state
{6.12)

= Bl =

That is. the full state is reached after one transition and only

requester 1 is always serviced at the exclusion of all other requesters.

(ii) D, >0, Dy =0

1 , i = full state , j=20
lim p,.,=191 , i =full state \{hp(j)} , Jj=0O
Ao M
0 ; otherwise
(6.13)

After one transition the highest two priority requesters alternatively

receive service at the exclusion of all others.

(11i) Dy =0, Dy > 0

T : i = i '=O
2 i={g} J
Iim p., =13 1 , i = full state , j # O
A

0] ; otherwise

(6.14)

After at most two transitions requester 1 is serviced in every state to

the exclusion of all other requesters.

(iV)-Dl.:Dz:O

T . i = g i =0
. i= {g} J
lim p,. =91 i = full state \ {hp(j)} . Jj#0O
Ao 1

0 ; otherwise

(6.15)

- 6.8 -

After at most two transitions, the highest two priority requesters are

alternatively serviced with all others excluded.

6.5 PERFORMANCE PARAMETERS

The definitions of the performance parameters can be motivated in a

similar manner as in Section 5.6. The definitions only are given here.

This is done in terms of the unique steady state probability vector shown

to exist in the previous section:

T
P =[Pg: Py+ Pyr +-v Ppyl]

6.5.1 Utilisation Performance

Let tj be the mean length of state

1
Dy + =— , J#0
2
pg
tjé: 1
Ml - x JBg
L h=1
Then
y i 1
i such thatph
PROP(h) 4 _PP(i) = h

m—1
§ Pty
i

J

g = hp(j)

(6.16)

(6.17)

(6.18)

- 6.9 -

K
A
IDLE 21 -) PROP(h) (6.19)
h=1

6.5.2 Mean Waitineg Times

The analysis of MWI(h) is complicated by the fact that the waiting
times may extend over an unbounded number of states for lower priority

requesters. The approach taken is to assume that request h is serviced in

the nth state = J and then evaluate cmwtf(j,h), the conditional mean

waiting time of the fixed priority arbiter model given that requester h

receives service in state = j. It follows that in the limit as n-

MWT(h) = 1lim E cmwtf(j,h) prob{nthstate = j | h serviced in j)

e Jj such that
h = hp(j)

2 cmwtf (j.h) pj
j such that

2 Py

j such that
h = hp(j)

In Appendix H, an expression is derived for cmwtf(j,h).

6.5.3 Metastable Reliability Performance

The metastable failure rate of the distributed daisy-chained fixed
priority arbiter shown in Figure 4.7 is evaluated in this section along
the same lines as in Section 5.6.3. The same definition of failure is
employed here, namely the arbiter fails if an Ack output is sensitised to

a batch exhibiting metastable behaviour. Also, the same aperture

- 6.10 -

modelling is employed as in Section 5.6.3. Aperture events are assumed to
occur just after the start of a state, as shown in Figure 6.2 in an

analogous manner to the batched case.

0P state] At I {n+1)th state

aperture I

FIGURE 6.2 Assumed Position of Aperture.

It can be observed that aperture events associated with allocated
settling times of Ty before failure results occur only at the start of
non zero states and in modules with priority higher than all pending
requests. The quantity apert(i) 1is defined as the sum of the request
rates of those requesters capable of causing failure at the beginning of

state 1i:

YA, . 120
h&i
apert(i) é q hchp(i) (6.21)
. O , i=0

it follows in an exactly analogous way to Section 5.6.3 that

m—1
2 apert[i)pi

i=1
NMFR = — (6.22)

t.p.
N

j=

where tj is defined in (6.17) and pj is defined in (6.16). The

- 6.11 -

expression for NMFR can be generalised to dynamic priority schemes as will

be seen in Chapter 8.

6.5.4 Limiting Performance Parameters

It is shown in Appendix I that

where the lim
=0

of (6.8) and (6.9) gives

% ., 1i=0
lim p, =
i r
A0 <
= . lil={g) . g=1
It follows from (6.18)
lim PROP(h) =0 , h=1, .., k

A=0

and from (6.19)

lim IDLE =1
A=0

and from Appendix H, that

lim MWT(h) = D,
A0

is ‘taken keeping request ratios fixed.

(6.23)

Applying results

(6.24)

(6.25)

(6.26)

= 6.12 -
and from (6.22) and (6.21) that
lim NMFR = O (6.27)
=0
The heavy loading limits are divided into two cases: (i) D2 =0 and
(ii) D2 ¥ 0.

M o= 1iW L %- z p(n) (6.28)
A= N A0

Applying results from (6.13) and (6.15) it follows that

%— , i=full state\N{g} . g=1or 2
lim pi =
A0 0 , otherwise
(6.29)
It follows from (6.18) that
[1
ey Pl
B
lim PROP(h) = { My (6.30)
A0 h=2
2(1y * Hy)
L O , otherwise

That is, only the highest two priority requesters share the resource in

proportion to their mean service times.

- 6.13 -

From (6.19) it follows that

lim IDLE =0 (6.31)
A= :

and from Appendix H, that

1 , h=1
Ha
lim MWT(h) =9 1 h=o (6.32)
A= T -
1
L @ . otherwise

That is, all but the highest two priority requesters wait indefinitely

without receiving service.

From (6.21), (6.22) and (6.29) it follows that

AHp
lim NMFR = lim e i R (6.33)
A= Ao Mg Ho

The limit of NMFR is unbounded due to requester 1 always requesting in

the aperture immediately following its service.

Case (ii) D2 >0

In Appendix I it is shown that for fixed request ratios and D2 >0

[+4]

lim p ='lim lim %— z p(n) (6.34)

A= N A=
n=

= G..14 —

Applying results from (6.12) and (6.14)

lim
A=

(6.35)

1 , i = full state
Pi =

0 , otherwise

The following results apply from (6.35) and definitions of appropriate

performance parameters

lim
A0

lim
A=

lim
A=

lim
=00

NMFR approaches

of each state.

1
—————1+p1D2 h=1
PROP(h) = (6.36)
0] , otherwise
r.D
172
IDLE = (6.37)
1+ ulDz
D2 , h=1
MWT(h) = (6.38)
© , otherwise
NMFR = O (6.39)

zero because requester 1 is always pending at the start

6.6 OOMPUTER STUDY AND RESULTS

Intermediate request loading between the light and heavy request

loading limits is investigated in the numerical results presented in this

section.

observed

follows

h

Also, the limiting behaviour predicted in Section 6.5.4 can be

in these results. All requesters are assumed identical as
My =8
A=A ; h=1,2, ..., k (6.40)

- 6.15 -

Along the lines of Section 5.7, three sets of values of Dl and D2

are selected to cover a wide range of applications

(i) D, =D, =0
(ii) D, =D, =0.2 (6.41)
(iii) D, = D2 =21

6.6.1 Proportion of Time Allocated to Fach Reguester

Graphs 6.1, 6.2, 6.3, 6.4 and 6.5 show PROP(h) and IDLE results
against the request rate. It is clear from the results that low priority
requesters are given considerably less proportion of time than higher
Priority requesters. A comparison of these results with the corresponding
results for batched arbiters in the previous chapter is worthwhile : As
the inter-service times increase, the fixed priority non batched arbiter
distributes the resource less evenly as shown in Graphs 6.1, 6.3 and 6.5.
This effect is due to the higher priority requesters having more time to
request before the decision point after each service when D2 is larger.
High priority hogging of the resource results. In contrast, increasing
inter-batch times of the batched arbiter results in a more even
distribution of the resource. The difference can be attributed to the
decision point occurring after low priority services in the batched
arbiter, and after high priority services in the non batched arbiter.

Graphs 6.1 and 6.2 show the effect of the service distribution on
PROP(h) results. The effect of the exponential distribution is to
slightly decrease the level of saturation in the arbiter for a given mean
request rate and mean service time. This can be explained in terms of
introducing more randomness in the arbiter request—service cycle as

discussed in Section 5.7.2 where the same Situation arises for the batched

- 6.16 -

arbiter. The IDLE time is slightly higher for the exponentially
distributed service times case, as can be seen from Graphs 6.1 and 6.2.
Since the mean length of zero state is 1/kA, independently of the
service time distributions, the zero state occurs slightly more frequently
when service times are exponentially distributed. This is consistent with
more “random” behaviour. It is due to the higher frequency of idle
periods that low priority requests receive slightly greater access to the
resource as is observed in Graphs 6.1 and 6.2,

The IDLE time approaches zero as request rates increase in Graphs
6.1 and 6.2 since inter-service times are zero. When D2 =0.2, as in
Graph 6.3, IDLE approaches 0.2/(1 + 0.2) = 0.167 and 1/(1 + 1) = 0.5
in Graph 6.5. When D1 = D2 the difference between IDLE and its
limiting value is a measure of the mean time of '"no request pending” and
indicates the level of request loading on the arbiter. As inter—service
times increase from Graph 6.1 to Graph 6.5, the loading increases for any
given request rate due to "wasted" time of D1 and D2.

Graphs 6.3 and 6.4 compare the Markov results with Monte-Carlo

simulation results and agreement within statistical variation is obtained.

PROP (h)

- 6.17 -

PROPORTIGN OF TIME FOR ERCH REQUESTER

5 reguesters, 01=0.00 02=0.00
constant service times

-

(e 1OLE
B = pig
L--- reaq.
e s PR

e i @,
G PEL

Ul QI N +—

200

0.5 1.0 1.5

request rate (requests/mean serv. time)

GRAPH 6.1

PROP (h)

- 6.18 -

PROPORTION OF TIME FOR ERCH REQUESTER

a.7

a.6

a

_ 5 reguesters, 01=0.00 D2=0.00
exponentially distributed service times

B LOLE&
: &-——~- req. 1 .
A==+ preg. 2
4+— — reg. 3
. Homenm g, 4 -
S—= reg 5
-)
d o — &
.—-9"‘3‘ . A mA- oA -+
4 s P -
’Q»""“_ - e °
St
% e e
J - fp— -
e —
-N-..._*_*%
h—%__
S
- -—x__‘- f
"""’\’_ x‘--,‘hh-x"":'i
0.0 0.5 1.0 ; 1.5

request rate (reguests/meon serv. time)

GRAPH 6.2

PROP (h!

- 6.19 -

PROPORTICON OF TIME FOR ERCH REQUESTER

5 reguesters, D1=0.20 02=0.20
constant service times

i hees THILE
41 B o ummy,
&L--- preq.
d— v

[+ 2]
) Formasas ma,
-

Ul WP +—

request rate (requests/mean serv., time)

GRAPH 6.3

proportion of time for each requester

- 6.20 -

PROPORTION OF TIME FOR ERCH REQUESTER

Fixed priority, 5 reqguesters, D!=0.20 D2=0.20
Constant service times, Monte-Carloc 20000 reg/point
[=]
B—— dle §ime
B mE, 1
&--- preqg. 2
- il o - R
g - Comsenos gy, B 4
G L 5
w
ol .
— 0
- _e__,,-e-""e'
a __‘_Q—-""'
: e
?’
-
207 P R b
- e W
ST
LT
[3] < -t‘
Y g — &= S e
A T~
. ~
b \H-\. S ~
\ hkm_hh
o -‘"'-“___! .H-x-“—-{_,,_:i;h__“‘
9.0 0.5 1.0 18

request rate {(requests/mean serv. timel

GRAPH 6.4

PROP (h)

s b = T

- 6.21 -

PROPORTION OF TIME FOR ERCH REQUESTER:

5 requesters, D1=1.00 D2=1.00
constant service times

T B IDLE

Sg. 0 0.5 1.0 1.5

request rate (requests/mean serv. time)

GRAPH 6.5

= .22 =

6.6.2 Mean Waiting Time for Each Reguester

Graphs 6.6, 6.7, 6.8, 6.9 and 6.10 show MWT(h) plotted for each
requester in 5 request fixed priority arbiters. The most striking feature
is the dramatic increase in MWT(h) for h > 2. These lower priority
requesters are locked out of consideration by thé two highest priority
requesters hogging the resource. The time between neither requester 1 nor
2 accessing the resource increases dramatically as request rates increase,
and so requester 3 must wait during these busy periods. The situation is
worsened as inter—service times increase because the probability of
consecutive services for requester 1 increases. In Graph 6.10, the large
value of D2 equalling 1.00 causes requester 2 to be locked out by
requester 1 being serviced consecutively. As a result of requester 1
lodging requests before the decision point with greater probability as
the request rate increases, its mean waiting time decreases at the penalty
of other requesters.

A comparison between exponential and constant service times can be
seen from.Graﬁﬂé 6.7 and 6.9. As expected from previous discussion, lower
priority waiting times decrease sligthly in the exponential case due to
more "openings” appearing in the higher priority request traffic because

of the more random request-—service cycle.

As a further reassuranc?) to=—the—errtical—Treaders Monte-Carlo

simulation results agree well with the Markov results as seen in Graphs

6.7 and 6.8.

— §.23 ~

D1=0.00 D2=0.00

MEAN WAITING TIME FOR £ACH REQUESTER

5 requesters,
constant service times

w© T 4
i ' [. 1
| / O-——= req. 2
A ’ A~m- peg. 3
; / +— — req. 4
! »--—-—reqg. 5
o' I /
]
i 1
I 2
n }]{ /
!
z P '
=1 / / .
i £ A
e

MW
el
~
‘b\

t'_,-I
] -+
F/
! A7
J + o
o o / / . -5 2
¥ -+
I /+ "' -
A
1/ i
- Jx, ,‘ ___Q_...e-—-a—e--—--s---—e-—-——s——-—e-—-
:}(A 8___9,..&--9' - _ . B i |
& = = = = =
>
0.5 1.0

GRAPH 6.6

request rate [(requests/mean serv. timel

- 6.24 -

WRITING TIME FOR ERCH REGUESTER

MEAN
5 requesters, D1=0.20 D2=0.20
constant service times
© L T T 7
P .
- s
- . % / F -1
! :
P ,
w0 o ! 1
1 &
' -Z 2
i i
wn f ’ h
: s
i | g
= ' ’
- ?(f _ a EB——— req. 1 T
% ' . G"'—”—'_ PBQ. 2
! / . A--- reg. 3
] ’ - = o~ req. 4
- a d
© ,f! f e ¥-—-—reqg. 5
3 ‘J
| iy
o~ :[2 i
[. el
LAy » —— e ——a—— —
/ A —————
- x/‘ 9_,_3.-3-—-9""' : 1
Lo, &~
/Z’A 2
#
“a.0 0.5 1.0
request rate (requests/mean serv, t 1me)

GRAPH 6.7

)

- 6.256 -

MEAN WAITING TIME FOR EARCH REQUESTER
D1=0.20 02=0.20

Monte-Carlo 20000 reg/point

Fixed priority, 5 requesters,

Constant service times,

© 3 [
[| B—— req. | #
] | G e, :
~ I { &--- req. 3 ‘
| adiiant s - "N B
X / b ant el T T -
! #

mean waljting time
4
e
5

1:]

1:4

1:]

1.0

0.5
request rate (requests/mean serv.

GRAPH 6.8

time)

- 6.26 -

MEHN WAITING TIME FOR EACH REQUESTER

5 requesters, 01=0,20 D2=0.20
exponentially distributed service times

¥ J o B— req.
I ? C——- req.

MHT (h)

/ "' A«e= reg
& +— — reaq.
P B,

Ul W N —

time)

request rate (requests/mean serv.

GRAPH 6.9

MHT (h)

- 6.27 -

MEAN WRITING TIME FOR EACH REQUESTER

5 requesters, 01=1.00 D2=1.00
constant service times

@ T o o
1 ' /
I /
' /
E A g
f) ' //
| !
”] ! /e/]
*1 4 /
1 !] : /ﬁj
! : /
N o
[f i
«1 i, 4 O—— req. 1 1
I , /ﬁ Be=ime prel., 2
ll : o A--- reqg. 3
| ¥ /’ e e pEgy 4 l
B g E - or——— oG 2
i =
1 ? (
o ~
B]
REOr
1 A‘p 4
- E/Bﬂﬁnﬁkikﬂ$qkﬂ&—hﬁB—*—s R - S W R \
0.5 1.0 1.5

request rate (requests/mean serv. time)

GRAPH 6.10

- 6.28 -

6.6.3 Metastable Failure Rate

Graphs 6.11, 6.12, 6.13 and 6.14, show the normalised metastable
failure rate defined in equation (6.22) for fixed priority arbiters
ranging from 2 requesters to 5. When the arbiter is lightly loaded
(A < 1/(k-1)), NMFR is a function h2 as follows : Each requester is
equally likely to be serviced in a singleton state with idle periods
before and after. The probability of a singleton state is approximately
1/(2k) for small A as can be seen from (6.24). Also, the zero state

has probability 1/2 and mean duration of 1/kA and so it follows from

(6.22) that for kA << =
1
[Dl + D2 -+ }-I]
k(k - 1)A°

NMFR =

(6.42)

1
[2(1 + 1) D +D2+E]

k(e - 12
i 2
This relationship' is evident in Graphs 6.11 to 6.14 for light
request loadings. As the arbiters saturate the failure rate changes
characteristic since high priority requesters dominate. Assuming service
alternates from requester 1 to 2, as is approximately the case for a
heavily loaded arbiter with small inter—service times, NMFR will increase
linearly as A/2. This cannot be precisely observed in Graph 6.11, since
lower priority requesters such as 3 and 4 in the 5 requester arbiter still
receive a significant, and dropping, proportion of time as can be seen in
Graph G.1. Th&s tends to diminish the increase of NMFR to about A/3 as
can be observed in. Graph 6.11 for A > 0.5 for k = 5. Note, however,

that NMFR is unbounded when D1 = D2 = 0.

- 6.29 -

As D, and D, increase, NMFR decreases for heavy request loadings

1 2
as can be seen in Graphs 6.11, 6.12 and 6.13. This can be attributed
directly to requester 1 dominating the services, masking the possibility
of metastable behaviour. When requester 1 has a request pending at a
decision point no indecision or metastable behaviour can occur. In the
extreme case of D1 = D2 = 1.00 as in Graphs 6.13 and 6.14, the effect of
diminished NMFR is pronounced. As predicted by limiting results of
Section 6.5.4, NMFR approaches zero as A = ® for non zero D2 as can
be observed in the extended request rate scale of Graph 6.14. Note, also,
in Graph 6.14 the convergence of all arbiters to the one decreasing NMFR
for A > 1.5. This can be explained by observing that requesters 3, 4 and
5 play little role for heavy request loadings because they are almost
completely locked out of contention by requesters 1 and 2. The following
approximation for NMFR assumes requester 1 is serviced nearly all the time
and requester 2 is serviced whenever requester 1 has no request pending
after D following its service. All other requesters are assumed to

2

play an unsignificant role.

DI 1.0

1R
(0]

Py

Thus, for A >> 1/(k - 1) and D2 >0

(6.43)

In Graph 6.14, NMFR is approximately described by the exponential decay of

{6 543)) B oraNAS 815 550

NMFR

- 6.30 -

NORMALISED METASTABLE FAILURE RATE
2 to 5 requesters, D1=0.00 D2=0.00

constant service times

Q
o
B—— 2 regs A
G-—~—- 3 regs oA
= A--- 4 regs o
¢ +— — 5 regs T - -

80

60

40

0.20

.00

T T

1.0 1.5

0
=]
o.-
o
]

request rate (requests/mean serv. time)

GRAPH 6.11

NMFR

1.00 1.20

80

0.60

0.20

0. a0

0. 40

- 6.31 -

NORMALISED METASTABLE FAILURE

2 to 5 requesters, D1=0.20 02=0.20
constant service times

RATE

F— 2 reqgs

©-——- 3 regs

A--- 4 regs
. +— — 5 regs .
o N
0.0 0.5 , 1.0 1.

request rote (requests/mean serv. time!

GRAPH 6.12

NMFR

0.20 40 a. 60 g0.80 oa 1.20

aa

- 6.32 -

NORMALISED METASTABLE FAILURE RATE

2 to 5 requesters, D1=1.00 D2=1.00
constaont service times

O—— 2 regs

G-——- 3 regs

A--- 4 regs
. +— — 5 regs 4
o .
0.0 0.5 1.0 1.5

request rate (requests/mean serv. time)

GRAPH 6.13

NMFR

- 6.33 -

NORMALISED METASTABLE FAILURE RATE

2 to 5 requesters, 01=1.00 p2=1.00C
constant service times

Q
o]
c:' ™ T LN Lag L ™ L =5 e
—— 2 reqgs
B-—— F reqs
A - - 4 reqs
= — 5 regs
[on]
(o'}
s J
Q

99,0 0.5 .0 1.5 2.0 2.5 3.0 3.5 40 45 5.

request rate (requests/mean serv. timel

GRAPH 6.14

- 6.34 -

6.7 CONCLUSION

This chapter has presented theoretical and numerical results on the
performance of non batched arbiters, in particular the fixed priority
arbiter. The techniques of analysis in this chapter are similar to those
in the previous chapter, but the results have proved to be in great
contrast. The fixed priority arbiter has been shown to possess some
characteristics not seen in batched arbiters that may be undesirable in
many applications. Low priority requesters have been shown to be severely
disadvantaged under moderate to heavy request loading in both throughput
and response time sensitive applications. The mean waiting times for low
priority requesters increases rapidly for request rates above 1/ (le1}
requests for service time. In fact, the mean waiting time has been shown
to be unbounded as request rates increase.

Another feature of fixed priority arbiters is monotonically
increasing NMFR with request rates for small inter-service times. No peak
failure rate occurs at realistic request rates unless significant inter-
service times are present. The reader will recall from Chapter 5 this is
in contrast with the peaking of NMFR found in batched arbiters. Chapter 8

pursues the comparisons of different arbitration disciplines further.

= L, e

CHAPTER 7

CLOCKED BATCHED ARBITERS — MODELLING AND

METASTABLE FATLURE MODES

7.1 TNTRODUCTION

The previous two chapters have examined asynchronous arbiter
circuits and their modelling. Since the design methodology for
synchronous digital circuits is usually simpler, many arbiter circuits
employ a clock to sequence internal state transitions. This chapter
discusses the modelling, analysis and performance of clocked batched
arbiters. Three specific examples of 'decentralised. clocked batched
arbiters are examined in detail. The three examples differ in the degree
of synchronisation of the resetting strategy whiéh- determines the
completion of service. Metastable behaviour modes are discussed in detail
for each resetting strategy and a comparison of each stategy is carried
out. Factors affecting the reliability are identified and design
considerations relevant to metastable behaviour are presented. The
analysis and modelling techniques developed by the author for the three
examples enable insight to be obtained into clocked arbiters in general
and some general observations are stated in the conclusions of the
chapter.

The organisation of the chapter is as follows: In Section 7.2,
examples of centralised and decentralised clocked batched arbiters are
presented. In Section 7.3 modelling assumptions and definitions are
clearly stated to allow a mathematical basis for Section.7.4. where the
zero to non zero batch transition probabilities are derived. These
transition probabilities are the same for each resetting strategy. In

Sections 7.5, 7.6 and 7.7, the three resetting strategies are modelled and

- 7.2 -

analysed for non =zero to non zero batch transitions. With the state
definition defined in Section 7.3, the direct resetting strategy model is
non Markovian. However, in Section 7.7 an approximate Markovian model is
developed and shown to be accurate through verification by Monte-Carlo
simulation employing the exact timing model. In Sectioﬁ,T.S, the service
performance of the three resetting strategies is compared and numerical
results are presented from the Markov modelling. In Section 7.9 the
metastable behaviour of the clocked batched arbiters is discussed. All
failure modes are treated and the significance of various circuit features
are identified. In Section 7.10, the metastability performance of the
three resetting strategies is compared. The general conclusions

concerning clocked arbiters are stated in Section 7.11.

7.2 EXAMPLES OF CLOCKED BATCHED ARBITERS

In this section some examples of clocked batched arbiters are
introduced. These examples will be used later in this chapter to
construct models to describe the behaviour of the clocked batched

arbiters.

7.2.1 FExample of a Centralised Clocked Batched Arbiter

An example of a centralised clocked batched arbiter is shown in
Figure 7.1. With reference to Figure 7.2, the circuit operates as
follows: Requests are synchronised to the clock by latch 1. One clock
cycle is allowed for metastable settling of latch 1 before further
latching occurs in latch 2. The purpese of latch 2 is to hold requests
for priority resolution in the encoder-decoder circuit. The encoder has

"don't care” conditions which ensure that only the highest priority

Req 1

Req.2

Req k

=i 3=

et E— — . — —

FIGURE 7.1 A Centralised Clocked Batched Arbiter.

DT Q ;
_D——* J Q encoder decoder D RQ >
> oK — —
1 22 to % 12 to 22
5 g
BB) o pR o>
> A K <}—s 3
9
» o ¥ <3—9 —]
L i L L5
N — Latch 3
Latch 1 Latch 2

Ack

Ack

Ack

[p]

- T.4 -

123791V Jutydieq peyd0T) pesST{EIIUL) Jo Sutwrl 2 7/ JUNDI14

yo3ieq yoieq yoaeq
JO 3DTAIDS jo 90TAl1DS 90TALDS jo
pua 18aT3] pua JxXau 18i11] ‘pus
| | I
yojeq oiaz __ ~_ _ _ = ees g

LLLT] LLiddo—] LT 7] A9V
S ano
ll._ll._ _ L | Iapoosp

S L4]

[4
I . | _ 0

SO RS S,

[LIT]1 vidiaa . _JTIT] — &

Wthhlllxlllrg__g _____ bay
HRER [1 _H__ummwzmz .

e T i

request is enclosed. As a result, the decoder asserts only the highest
priority output. This output is sampled on the next clock edge by latch 3
to prevent transient glitches from the encoder-decoder propagating to the
acknowledge outputs.

Batching of requests is achieved by using a lock out mechanism in
latch 2. The L output of the encoder is asserted low when at least one
encoder input is high. This arrangement prevents any further requests
being latched by latch 2 until all the currently latched requests have
been serviced.

The dropping of a Req input causes direct resetting of latches 1 and
3, which speeds up passing on of the resource to the next priority
.requester waiting in a batch and drops the acknowledge signal as early as
possible to allow immediate re-requesting. The issuing of the next Ack
signal cannot be done immediately due to possible glitches on the decoder
output, and hence latches 2, 3 must be used to synchronise the output
transition. Latch 2 is not directly reset in order the allow metastable
settling time of one clock cycle less propagatio 9 delay of the

encoder—decoder.

- 7.6 -

7.2.2 Examples of Decentralised Clocked Batched Arbiters

This section introduces three forms of a decentralised clocked
batched arbiter based on a design presented in [C.2]. Associated
geographically and logically with each requester is a circuit module. The
distributed modules are connectea via a common line, a clock line and a

daisy chain as shown in Figure 7.3.

CLOCK - o
+ V
cc
Common line
] 4 A ¥ A
Req 1 —» — —
Module 2 Module k
Ack 1 < Module 1 | | u] - |
< < g
4 4 ’ s e I A
daisy chain > for
decreasing priority further
expansion

FIGURE 7.3 Module Interconnection Structure for a
Decentralised Clocked Batched Arbiter.

The wired-or common line is assertedrwhen at least one request is latched
by a module and provides the lock out mechanism which ensures batching of
requests. The daisy chain implements the priority structure within a
batch of requests. The head of the daisy chain is connected to logic 1,
and it is this end that marks the highest priority in the chain.

Details of a module are shown in Figure 7.4.

+V.

cc

Ack Reg

Clock

I\JD
=
|_;'O 1

<

o/c 0/c
i e P
Common line *
daisy daisy
in out

FIGURE 7.4 Module Circuit for Clocked Decentralised
Batched Arbiter.
(i) Direct resetting - include ABC only
(ii) Half resetting ~ include DEC only
(iii) No resetting — delete all dashed lines.

- 7.8 -

The different forms of resetting request to flip-flops FF1 and FF2 are

labelled. The effect of these different strategies is discussed later in

this chapter.

7.3 MODELLING ASSUMPTIONS AND DEFINITIONS
This section presents assumptions and definitions relating to: the

timing; request and service properties; and state definition for the

clocked arbiters considered.

7.3.1 Timing Assumptions

An idealised model-is adopted for the logic circuits. The effect of
non ideal characteristics is discussed in Appendix J after the idealiéed
model has been examined when the significant parameters can be clearly
identified. The idealised assumptions are:-—

(1) No clock skew between modules.

(ii) Ze?p rise and fall times.

(iii) Zero logic propagation delays.

(iv) Zero transmission delays along wires.

(v) All flip—flops have identical metastable characteristics.

7.3.2 Request and Service Modelline

The request-acknowledge protocol described in Chapter 2 applies in
this chapter. Re-request times are assumed to be exponentially
distributed as in Chapters 4,5 and 6. The service time for requester h,
denoted ts(h);.is assumed to be distributed arbitrarily with a density

function denoted by fh as in previous chapters.

- 7.9 -

A new time denoted ta(h)' is defined as the duration of Ack h is
asserted as illustrated in Figure 7.5. This is longer than ts{h) due to

delays within the arbiter.

A

Req h l

ARBITER]

t
i k~*1
- Ack h :] i
v ' |
! I
: ts(h) : |
— o~ R = :: !
A4 o o M 1 1
[3] u U o 'i 1 l

| a

L 5
i L |

FIGURE 7.5 Arbiter Request-Acknowledge Protocol.

7.3.3 State Definition

As in Chapter 5 each batch has an associated state formed from the
set of pending requests at the batching point or the end of the previous
batch. The end of batch points will be clearly identified in timing

diagrams. The nth state is denoted by S(n).

7.4 7ZFERO TO NON ZERO BATCH TRANSITION

All clocked batched arbiter examples presented have the same zero to
non zero batch transition probability because they all latch requests on
the first rising clock edge after the first request is made during the

idling period. Figure 7.6 shows the general form of the transition.

- 7.10 —
end of latch
batch point
S =
8 (r-1}=0 (n) =1i=0
ZERO BATCH NON ZERO BATCH
] I] ! 1 L (1 il
" I)/
T
& I
clock period
requests

FIGURE 7.6 Zero to Non Zero Batch Transition.

t :
In this section the probability that the n h state is the non zero

: th A
state i is derived given that the n-1 state is zero.

prob[S(n) = i | S(n-1) = 0]

o

S S(n)=i and S(n-1) lasts | S(n-1) = 0O
= z BEOS d clock cycles
d=1
T (d—1) =\ T “A.T
R e fo e e (7.1)
d=1 h=1 gei féi

where TC = clock period. Equation (7.1) is an infinite geometric series
k —AhT
2 ; c
with a term to term ratio of || e . Since TC is positive, the

h=1

ratio is less than one and hence the series converges to

= Tall -

AT AT
M a-e®8BHTM e *°
prob[S(n)=i | S(a-1)=0] = E= - _}\if;l (7.2)
1 - TT~ e =
h=1

VEquation (7.2) can be checked by comparing its limiting case of Tce 0
with prob[S(n)=i | S(n-1) = 0] in equation (5.9) for the unclocked model

with Dy = 0. From (7.2) it follows that:

T AT 1T 1
lim prob[S(n)=i | S(n-1)=0] = lim % gES(n& péS(n)
Tcﬁo Tc:_:O 2 Ath
) he1
[A
" g .S(n) a singleton state
s
h=1 Ah
=
o) ,otherwise
L (see note 1)

(7.3)
Equation (7.3) agrees with the asynchronous model with D3=O in (56.9).
Note 1

If gIGS(n) and g2€S(n) and g, # 8y

then

A AT
lim . prob[S(n)=i | S(n-1)=0] = lim A ——a—=— = O
; + K
el T =0
C c 2 Ah

h=1

-T7.12 -

7.5 NO RESETTING CLOCKED BATCHED ARBITER

The distributed clocked batched arbiter of Section 7.2.2, Figure 7.3
and Figure 7.4 with ABCDE deleted is modelled and analysed in this
section. The strategy of no resetting results in the synchronisation of
dropping requests after service. This introduces delay in passing on the
resource from requester to requester, since this ecan only occur at
discrete times.

The timing diagram shown in Figure 7.7 illustrates the operation of
the circuit for transitions between batches and allocation of the resource
within batches. During a zero batch, requests which occur during the same
clock period in which thé first request occurs, are batched together and
serviced in the batch following.

At the start of a non zero batch, a clock period occurs in which no
Ack signal is asserted. This is designated D2 and matches D2 of the
asynchronous batched arbiter model of Chapters 4 and 5. Following D2

are the time periods ta(hl) and ta(h2) where requesters h. and h.2

1
are serviced (h1 has a higher priority than h2). Note that ta(hl) is a
function of the service time ts(hl). A‘careful examination of the timing
reveals that the first value of t in a batch is a different function of
ts than subsequent t, values in the batch. This occurs because the

first ta starts on a rising clock edge whilst subsequent 1:a periods

start on a falling clock edge. It follows that

3 e (h) . ’ '
(5’ + Tc)TC , h first in batch
t (b) = 5 (7.4)
t (h
(1 + (; i % })TC . otherwise
c

where [x] é greatest integer ¢ x.

"1937qay 3urysieqg pey20T) Buriiessy 1081TQ ON Fo Sutwry 7/ JUN914

1ay3a801
— - S pay23eq
o 5 j0 sasanbax
£. .8 €.+ 5
pus ("y) 13 pus ("y) 1 Ty %3 pu= \
I e i Vi
I
| ‘a goreg I (Fuy®a | Zq ITg | (Tw® ! 2% | 123Ed
0137 e1ez

L | I AR] 1Y

— T.13 -

_ b v 7 f el [Ty
S—E _ M e IIm 1110 sbay
_ ﬁll _ : \\4 aUT]

! : uouwwon

Sy Y Y Y N T Y Y s Y

- 7.14 -

After all batched requests have been serviced, a time duration of half a
clock cycle, labelled Dl' occurs before a new set of requests are once
again latched. The asynchronous batched arbiter model has a corresponding
time duration also labelled Dl' Note that the clocked model has no time
duration corresponding to D3 of the asynchronous model.

The differences between the asynchronous and no resetting clocked

model of this section are:

(i) zero to non zero batch transition (see Section 7.4)
Tc
(ii) D2 =T, Dy =5 Dy =0 for clocked model

(iii) the service times are defined differently as in (7.4) for the
clocked modél. |

With these modifications, the probability transitions is derived directly
from the asynchronous model in Appendix K. Note that (7.4) implies that
ta(h) will have a discrete probability distribution derived from the
continuous distribution of ts(h). Also, ta(h] is larger than ts(h)
from Tc/2 _up to 3TC/2. This idle time is not present in the
asynchronous arbiter, and occurs because of the synchronisation of

dropping requests to the clock.

7.6 HALF RESETTING CLOCKED BATCHED ARBITER

The no resetting arbiter circuit of Section 7.5 wastes time due to
synchronisation of dropping request during a batch. This section
considers a modification to the module circuit to speed up this
synchronisation process. In Figure 7.4 cohnection DEC directly resets
FF2 once a d}opping request is latched by FF1.

With reference to Figure 7.8, the following model is formgd:l

(i) Zero to mnon zero batch transition is éeséribed by

Section 7.4.

- T.15 -

(ii) An initial batch duration D_. = TE occurs but no end of
batch duration is present (D1 = 0).

(iii) The service times are given by

t (h)
t (h) = (1 +|=—[)T, (7.5)

Cc

The time allocated for servicing a request, ta' is now from zero to TC
larger than tg wvhich is an improvement of TC/2 over the no resetting
strategy of Section 7.5. Also a saving of Tc/2 occurs at the end of a
batech due to the absence of Dl' The probability transition between
states can easily be derived along the lines of Appendix K, with

modifications to ta(h) as in (7.5) and putting D1 = G,

= 1B s

*123Tqay paY20TD Juriiesey yTeH jo Sutwrl 8T/ JUN9IA

yo3eq yo3ieq yoaeq yo3leq 1ay3=807
Jo jo jo jo pRyvieq
pu= pus pu= pua s3ysanbax

| __ _ _ wy®a Cw®, (w® _ \
1

|
1 P i i
NQ : yoleq 013z _1 < ND T - Tk NQ = yo231eq 0137

_ _ “l _l..l.l..l..l.l_ oy

H
0

Lo | _

_ I HU Mau
R (1117 .
—_— T TTTT 11 [TITTIT — beay men

1 r L] I G
_ j : UOuno?)

t

PR I 5 A o v e) S o B s o e 1 e e

= il =

7.7 DIRECT RESETTING CLOCKED BATCHED ARBITER

The direct resetting strategy is the most loosely synchronised of
all three. The dropping of a request is no longer synchronised to the
system clock, but directly results in the next latched request down the
daisy chain being serviced. Flip—flops FF1 and FF2 in Figure 7.5 are
directly reset via the connection ABC.

Figure 7.9 shows the timing of the direct resetting strategy.

A few points should be noted:

(i) The end of batch point is defined by the last time at which
new requests can be latched so that they are serviced in the
next batch. In Figure 7.9 this end of batch point can
actually occur before the last requester has completed its
service in the batch. Thus, an overlap in ta(2) and D2
can occur, as shown. This will be discussed more fully in
Section 7.7.1.

(ii) The end of batch always occurs on a rising clock edge. At
this point the arbiter synchronises to the clock. Thus, each
batch is synchronised to the clock, as opposed to each
service, within a batch as in Sections 7.6 and 7.5.

(iii) As a result of (ii), no time is spent idling between
servicing of requests within a batch. A transfer of the
resource within a batch involves no delay necessary to
synchronise.

Thus

¢ (h) = t_(h) (7.6)

*1831qay 2uryoieqg peyoo[) Surlisssy 3I091Td Jo BUTWIL 6/ JUN9I4
1ay3=a8o3
“yoaeq ysaeq W yo1eq payoaeq
Jo paysieg J0 30 - s3senbax
Pua sisanbay pua pH= pua
rd e Z,\P T\ B \
1) 3
iy ot | G0t v
i _ 1 P - 1.5 ' 7 1
oD
ﬁu ﬂu 1) 3 ~a ﬁu nmavmu Q)
— L1 R AoV
] 1 R ARER| _ o
I
0
& 1 ~ _III. NO
het N A T D
! Sp— 1111 wllll B s
Q.._:_.n.hl..l..:r _ T
N LITT] & [] D mau
11 E ERNE | [T1T1] *shay
— A 1T HEEE (IPTTI1IT] beyg meu

RN

. autT]
rllrllllll uouuo)

B e g 0y O o 5 5 o 5

- T7.19 -

7.7.1 Markov Property of the Direct Resetting Version

The clocked arbiters with no direct resetting and half direct
resetting both are Markov processes when the state definition of
Section 7.3.3 and exponential re-request distributions are assumed. This
follows because all the information necessary to determine the probability
of a transition from state j to state 1 1is contained in the state j.

However, with the direct reset, a problem arises at the end of a
batch. As shown in Figure 7.9, requester h2 may finish accessing the
resource after the latching point for the next batch (labelled (2) in
Figure 7.9). The time remaining for h2 before the latch point (3) is a
function of the state (2)(3) and state (1)}(2). The transition
probabilities from state (2)(3) are not Markovian, because they depend on
the previous two states.

A new state definition could be adopted that contained the previous

two batch compositions. Transition probabilities would be
Prob[S(n), S(n-1) | S(n-2), S(n—3)] , b

This however, involves 22k states, where k is the number of requesters,
in the Markov process, which is considerably more complex than the
original model.

An approximation could be employed when the clock period is small
compared with batch lengths. The approximation is to ignore the overlap
altogether and assume the last requester in a batch finishes on the rising

clock edge nearest to the actual finishing time. Thus t is defined as

- 7.20 -

t_(h) ,h not serviced last in
2 the batch.
A
AT B I NN
VT -) mp
L. €batch c s'71 ;
1 h. €batch ,h not serviced
T 1 last in the
! c hI#h batch

(7.8)
With this definition, the asynchronous model of Chapter 5 can be
applied with D2 S Tc ; D3 = D1 = 0 and the zero to non zero transition

probabilities modified as in Section 7.4.

7.7.2 Assessment of the Markov Approximation

The approximate Markov model for the direct resetting version
described in Section 7.7.1 and 7.4 has been used to generate numerical
résults. Monte-Carlo simulé&ions based on the complete timing model of
Figure 7.9 have -been performed to assess the Markov approximation. Graphs
7.1 and 7.2 show a direct comparison in results with a service time of
2.80 clock cycles. The graphs are'virtually indistinguishable. A more
sensitive comparison is shown in Table 7.1, where mean waiting times are
considered. Slight differences of the order of 1 to 2% can be observed

between the Markov and Monte—-Carlo results. The approximation is

concluded to be reasonably accurate.

- 7.21 -

PROPORTION OF TIME FOR EACH REQUESTER

Clocked Batched, Direct Heset, 5 requesters, mst=2.80
Constant service times, Monte-Carlo 20000 reg/point

Q
B——— |dle time
G——= reqg. 1
A--- preq. 2
b +— ~— req. 3
s X4-—-— req. 4 -
" === rEg o
3
o
Q
[
£
g w
v o]
[
]
Y
1)
£
+ -
« O
Q
[
[s]
=
r.
o]
o o
3
=%
o
Sp.0 0.5 1.0 1.5

request rate (requests/mean serv. timel

GRAPH 7.1

PROP (h)

- 7.22 -

PROPORTION OF TIME FOR ERCH REQUESTER

5 requesters, direct resetting strategy
Constant service times= 2.8 clock cycles

o MB—— IDLE]

34l &G——- req. | J
\ A--- preg. 2

° \ +— — req. 3

a4 X-—-— req. 4 .
\ &—- reqg. S

cs o 1 -

0.5

0.2

a.1

Sg.0 oS) 1.5

request rcote (requests/mean serv. time)

GRAPH 7.2

TABLE 7.1

- T.23 -

DIRECT RESETTING STRATEGY.

MWT(1)

MWT(2)

MW (3)

MWT(4)

MWT(5)

Approximate
Markov
Results

4.681

6.002

7.670

9.742

10.73

Monte-Carlo
Run 1
(100,000
Services)

4.730

6.038

7.618

9.432

10.472

Monte-Carlo
Run 2
(100, 000
Services)

4.741

6.079

T.667

9.447

10.546

Monte—Carlo
Run 3
(100,000
Services)

4.746

6.081

7.635

9.391

10.519

Monte-Carlo
Run 4
(100,000
Services)

4.474

6.069

T.626

9.412

10.510

All times normalised by the service time.

Request rate = 0.5 requests/service time

Service time = 2.5 clock cycles.

- 7.24 -

7.8 COMPARISON OF EFFICIENCY AND SERVICE PERFORMANCE

In this section the service and efficiency performance of the three
resetting strategies is compared. Due to similarities with numerical
results presented in Chapter 5, features pertaining to the synchronous
nature of thé arbiters are highlighted in the results. These include the
efficiency of the arbiters measured in terms of IDLE, and the proportion
of time allocated to each requester. Firstly, the differences in
modelling parameters are discussed.

The more obvious differences lie in the wasted time between
servicing of requests during a batch. This can be seen by examining
ta(h) - ts(h) : These results are shown in Téble_?.z and a graphical

representation is shown in Figure 7.10.

EFFICIENCY AND SERVICE PERFORMANCE COMPARISON

Strategy ta(h)—ts(h) D1

no Tc 3Tc T

resetting T 5 -2—9-

half : 0T 0

resetting C

direct

resetting 0] ~ 0
Table 7.2

The best is the direct resetting strategy with no time wasted between
services during the batch.
Another difference is the inter-batch time denoted Dl' This is

wasted time also, and the different strategies are compared in Table 7.2.

D1 has a function which is less obvious. It provides the opportunity for

- 1.256 -

the last requester serviced in a batch to request before the end of the
batch. This makes the arbiter slightly fairer under heavy loading
conditions, numerical examples of which can be seen in Chapter 5.

Results of a Markov computer study are shown in Graphs 7.3, 7.4,

7.5, 7.6, 7.7 and 7.8. To aid the reader, Figure 7.10 shows the

variations of t with tg for no resetting and half resetting
strategies.
ta 4 - ta 4 —
el 1
3+ 34

1+ 1 +—)
0 = l I ? 0 T { T } — >
0 1 2 3 t 0 1 2 3 t
s s
(clock cycles) (clock cycles)
no resetting half resetting

FIGURE 7.10 t Versus t .
e 5

For each strategy the IDLE time varies considerably as t, varies due
to the discretisation of the clock maintaining a constant t, until ts
reaches the next clock period. As can be seen in Figure 7.10 for no
resetting a threshold occurs at one clock cycle and for half resetting at
0.5 and 1.5 clock cycles. The effect of these thresholds is evident in
thehworsening of IDLE for t, increasing from 1.99 to 2 in Graphs 7.3
and 7.4.

The conclusion is that the direct resetting strategy provides
superior efficiency and utilisation performance over half and no resetting

strategies.

PROP (h)

-

1

0.8 0.7 0.8 0.8 1.0

0.5

0.2 0.3

0‘1

<0.0

0.4

DLE

- 7.26 -

TIME FOR DIFFERENT SERVICE TIMES

S requesters, no resetting strategy
Constant service times

-

s GERN. = Ly 0
& ——- SERV. = 1.5 .
&--- SERV., = 1.98

4

-
& -
B m S = B om ool = vk nlkr wler om ol w oA ow how o owh

0.5 1.0 1.5

request rate {requests/mean serv. timel

GRAPH 7.3.

PROP (R)

- 7.27 -

PROPCRTICN OrF TIME

S5 requesters, no resetting strategy

8.5 0.6 0.7 a.8 0.9 1.0

0.4

0.3

Constant service t imess

F0OR

EACH REQUEZSTE

2.0 clock cycles

4

IDLE
red.
redq.
req.
req.
redq.

e LN =

Y e .thﬂhﬂLiﬁ*'*“ﬁ

1]
r:1

13
]
i
1}
-}
@
|

4

—

.0 t.S

request rate (requests/mean serv, timel

GRAPH 7.4.

PROP (h)

- 7.28 -

IDLE TIME FOR DIFFERENT SERVICE TIMES

S requesters, holf resetting strategy
Constant service times

i r T

o B—— SERV. = 1.0

S 7 G~—= SERV. = 1.5]

A--- SERV. = 1.88

-]

)\ |
%

r-d ‘\“.‘ 4

1

0.8
j .
xR
r/{/

0.5

4

o
by ~8
P ‘"ﬂ--——@_ - i
" o — B e o e B e e D D — o
"
. o Ay =
o
a
~
i a 4
[=] ~a
~a
RN S
HJ "‘““&-h—ﬁ_‘_*.“__"__‘
$ 1
e o)
0.0 0.5 3 1.0 1.5

request rate (requests/mean serv. time)

GRAPH 7.5.

PROP (h)

s s

PROPORTIAN OF TIME FOR ERCH REQUESTER

S regquesters, half resetting strategy
Constant service timess 2.0 clock cycles

a
AT ¥ - 1
1
ol g—— IDLE
A G-——- req. L :
‘ .
\ A--- reg. 2
[4+— — req. 3
@ ||
g 1 \ e ity 4
‘ &— - req. 9
e !
sl |\
.“v
1
F 4
(= \
\
sl <N
a \m 4
- \\mxﬂﬁﬁ_&-q%k
a1 = a m » 5 8=
m
g 4

request rate {(requests/mean serv. time)

GRAPH 7.6.

FROP (h)

- 7.30 -

IDLE TIME FOR DIFFERENT SERVICE TIMES
S5 requesters, direct resetting strategy
Constant service times

1
=~

By BERN,
. &— SERV,
& - - - SERV.

0.9
wiinu
— s

o

0.8

0.7

a.s
¥

Q.4

o

v o

(=]
‘o

v o

(=1

h= .
L—-.l--.a.-........-....._..,--.a.—--—lb

" .
S '

Q

- L v

On‘n Q.5 1.0 t.s

request rate (requests/mean serv. timel

GRAPH 7.7.

PROP (h)

= 781 ~

PROPORTION OF TIME FOR ERCH REQUESTER
S requesters, direct resetting strategy
Constant service times= 2.0 clock cycles

o

i B 10LE |

3 i\ G&——- req. ! 1
A--- reg. 2

o |\ +— — req. 3

a1 msrues wery, 4 4
&— -~ req. 9

r-

C;J 4

w

S .

0.4
‘7[;
—
- a
i

m \
+ «
Q 5

m i
N
\ ”Q.—Q——G—'-G——Q_-Q_:S‘_—: =
g.‘ __Q—--Q A--...I_A_.'.l_.g,---l.--ll 2-.
-
&
=]
d ™ L -1
0.0 .5 _ 1.0 : .5

request rote (requests/mean serv. time)

GRAPH 7.8.

- T.32 —

7.9 METASTABLE BEHAVIOUR OF THE CLOCKED BATCHED ARBITERS

As mentioned in Chapter 3, metastable behaviour of‘ synchronising
elements or flip-flops within an arbiter can lead to failure of an
arbiter. Failure may be seen as an Ack output undefined for a prolonged
time or two Ack outputs interpreted as asserted simultaneously. When
request timing is independent of internal arbiter timing or other request
timing (i.e. asynchronous requests) the arbiter can be marginally
triggered. This corresponds to either a request occuring whilst the
particular request line is in the process of being synchronised in a
clocked arbiter. As discussed in Chapter 3, the problem of metastable
behaviour in arbiters is_unavoidable, however an established technique for
ensuring a small probability of failure is to design sufficient delay in
the circuit to mask metastable behaviour with settling times less than the
delay. Due to the exponential distribution of metastable settling times,
dramatic improvements in failure rates can be achieved with small changes
in delay. Si@}larly, within a single circuit metastable failure modes
with differing amounts of delay for metastable settling may have very
different probabilities of causing a failure. For example, if a full
clock period is allowed for settling after synchronising rising edges and
half a clock period for synchronising falling edges, then it would be
reasonable to assume the falling edge synchronisation failure probability
dominates the rising edge synchronisation failure probability. Critically
associated with each synchronisation e&gnt is the allowed settling time.
Only the shortest settling time modes of a circui£ néed be considered in a
failure analyéis.

Because the rising edge request synchronisation is identical in all

forms of the clocked batched arbiter, it is considered first.

- 7.33 -

7.9.1 Failures due to Synchronisation of Rising Edges of Requests.

Only rising edges requests will occur at or near the end of batch
need to be considered. All other synchronisation of rising edges occur
during a batch and are allowed at least an extra clock cycle to settle
before being unmasked by the common line on the j input to FF2 in
Figure 7.4 at the end of a batch.

The timing diagram shown in Figure 7.11 illustrates the sequence of
events that may occur at the end of batch synchronisation. A request is
asserted just when requests are being sampled for the last time at the end
of batch. This causes FF1l to enter a metastable state which lasts at
least chz. Ql forms the input to FF2, and FF2 enters a metastable
state lasting at least TC/2 caused by sampling the undefined Q1.
Provided the daisy in signal is asserted for the particular module (i.e.
it is higher in the daisy chain than all others with latched requests),
the daisy out and Ack outputs are undefined causing a lower Ack to be
undefined. The resulting scenario is that two Ack signals are undefined
and can be interpreted as asserted, constituting failure of the arbiter.

The sequence of events is conditional on a metastable state lasting
TG/2 and transferring to another flip-flop and lasting a further TC/2.
The relative probability of this with respect to a single flip-flop
staying in a metastable state for a period of Tc is still a matter of
research. It is assumed here that the two are of the same order of

magnitude.

‘uo3estuoiyoukg jsanbay BursSTy UOC SINTTEL 3TEISEIBN LL-Z JdNDId

pautiapun

pe3iasse ul AsTep

r-—————-— -
| i
Ldaws
oy
t
i
231815 9[qEISBIBN
[%y
M &
~ 21815 3TQBISBISH
|
B
é
=T B
Z P W WA Y 4 1 :
D payod3ie] I13yio ou .\1 - Pep ol e - auT
JT pautrjapun 4 uouwo)
BaSTX=a 1T JT
No pays31eT AT109110D I3aYylOo BWOS
201D

yoaeq jo pus

= T.35 =

7.9.2 Falling Request Edge Failure of No Resetting Clocked Batched

Arbiter

As discussed previoﬁsly. falling request edges are synchronised to
the clock by the no resetting clocked batched arbiter. The timing diagram
shown in Figure 7.12 illustrates a synchronisation failure when a request
is dropped. FFl enters a metastable state ﬁhich lasts at least Tc/2 and
causes FF2 to enter a metastable state. The Ack correspéﬁding to. the
dropping Req becomes undefined, and if a lower priority FFl is set (i.e.
request latched), the corresponding Ack is undefined.

Note that half the settling time is allowed for dropping request
synchronisation failure compared with the rising edge request
synchronisation failure. Thus, the failure probability is dominated by
the falling request synchronisation. During a batch of m services,
m—1 synchronisation events occur that can result in double Ack
assertions, and one synchronisation event that can result in a single
undefined Ack signal. Note that other failures can occur where the

settling time-must exceed TC/2 to cause failure but these are ignored.

- 7.36 -

*1931qay SuTyoleg peoooT) SuTidiesay 3091TQ ON Jo aanTred 98pg asenbay BurTied

gL’ L JunsvId

TINTATANN

AANTAHAND J«<)\LMV

MoV IX3N

21E1g mﬁgmummmwﬂfxmmfx

A2V

D,

2318315 9TqBISRISH

boy

A20TD

- 7.37 -

7.9.3 Falling Request Edege Failure of Half Resetting Clocked Batched

Arbiter

During a batch, the half resetting clocked batched arbiter
synchronises falling requests to the clock. The situation of Req dropping
near the sampling clock edge is illustrated in the timing diagram of
Figure 7.13. As shown, FFl enters a metastable state which directly
induces FF2 to enter a metastable state via the FF2 reset line. The
probability of an undefined reset signal inducing metastable behaviour is
not known, but certainly cannot be dismissed. However, the lack of any
allowance for settling time f{for FF1 could be catastrophic for
synchronisation reliability. This circuit is considered to be a very poor

synchroniser.

- 7.38 -

*39137qay Butydieg peyd0oT) Buriissay JTBH Jo 2aInTreg 28py 3senbay SurTTed

—/

pauTjapun ,x\\()cpz

pautjepun :|:3f\|)(s/\\~

Ja@sai1 Teurdaieuw

231818

37qelIselauw

€L/ FUN9I4

A2V
1m0

AWV

bay

320710

- 7.39 -

7.9.4 Falling Request Edee Failure of Direct Resetting Clocked Batched

Arbiter

The direct resetting circuit has the apparent advantage of not
synchronising falling request edges to the clock during a batch. Thus, no
metastable failures can occur when a requester, not last in a batch, drops
its request line.

The last requester in a batch can cause metastable failure if Req is
dropped so that the common line goes high on a falling clock edge. As
shown in Figure 7.14, the common line changing on a falling clock edge
marginally triggers FF2 of a module latching a request at the start of
the next batch. The settling time available for FF2 is Tc/2. after
which the Ack and daisy outputs are affected, leading to failure of the
arbiter. These events are all conditional on Daisy In being asserted for
that particular module. The failure described cannot occur if a higher
priority module successfully latches its request, thus blocking the daisy
chain. The probability of failure is the sum of the probabilities of the
following mutually exclusive events:—

1. The highest priority module with set FF1 fails.

2 The second highest priority module with set FF1 fails and

all higher modules have a reset FF2,
m. The mth module with set FF1 fails and all higher priority
modules have a reset FFé.

Where m is the number of modules with FF1 set at the time of marginal

triggering.

- 7.40 -

‘bay Surddoig o031 anp 131Tqay 3uTydileyg payd0Td waﬂuummmm 109aT(@ 3o =anTTed Ppl°/ FN9IA

Ino
AsTE
peutjapun FRa
pautIapun IJ}\C)()L oy
£
e
231B1S °@]qBiasSelaj
Re

1103®BQ JX¥au Uuf
2Tnpow 3ISIT,

\ °

4 ya3ieq ut
; bay ase1

2uT|
UOUon

NG 19§ Ou JT PRUTISPUN 5 mvones”

NO 328 AT219021100
B

_ . 001D

- T.41 ~

Assume that the probability of a marginally triggered flip-flop not
settling after Tc/2 and causing a failure is Ps and the probability of
a marginally triggered flip-flop settling to a reset state before Tc/2
is %: (It is assumed Fhat Py is much smaller than 1 and so if there is
equal probability of a marginally triggered flip-flop resolving to either

1-p
state, the reset state will have probability —E—i-x é-). The probability

of event ¢ occurring is the (%ﬂe—lpf. Thus

prop (failure at end of batch | common line changes near)
falling clock edge

m
1,8-1
= 2 @ ey <2 (7.9)

This failure probability should be compared with that of the no resetting
strategy which is approximately equivalent to m Pg- This is providing
the two failure processes are assumed to have identical probabilities
which is not unreasonable considering both involve the same settling
period of Tc/2' The above analysis suggests the direct resetting
strategy is slightly superior in metastable reliability, under heavy
request loading where batch lengths (m) are expected to be close to the
total number of requesters. Under light request loading batch lengths
equal to one would be expected, in which case both strategies give similar

results.

- T7.492 —

7.10 COMPARISON OF THE METASTABLE RELIABILITY OF THE RESETTING
STRATEGIES

The dominant failure mode was found to be the falling edge
synchronisation of requests in all cases, because of the reduced
metastable 'settling time offered by the arbitrétion circuitry. A
particular poor circuit is the half resetting strategy which offers no
settling time at all for dropping request synchronisation and thus should
be avoided.

The other two resetting strategies:-— no resetting and direct
resetting performed similarly, the direct resetting slightly superior
under heavy réquest loading and tﬁe assumptions outlined in Section 7.9.4.
Both allowed equivalent setting times of Tc/2 .

It is interesting to note that the asynchronous decentralised
batched arbiter described and analysed in Chapters 4 and 5 is never
subject to metastable failure on falling requests but only rising request
edges which occur at the start of a batch. An isolated request during a
zero batch cannot cause metastable failure in the asynchronous circuit but

can in the clocked version.

7.11 GENERAL CONCLUSIONS

The clocked arbiters studied in this chapter differ from the
asynchronous arbiter designs presented and analysed in the thesis in the
following ways:

(i) The design of clocked arbiters is usually simpler and more

easily verified. This may result in a more error free design

process.

= T:43 ~

(ii) The clocked designs produce longer delays in acknowledging
requests since the clock period must be designed for worst
case delays in the circuit over all possible clock period
contingencies. Thus, the idle time of clocked arbiters tends
to be higher.

(iii) Requests must be synchronised to the clock on both the
assertion of a request and the dropping of a request. The
latter is absent from asynchronous circuits. The number of
synchronisation events where metastable failure of the
arbiter can result is greater in clocked designs since both
request edges are synchronised.

(iv) In asynchronous designs, requests are synchronised with
respect to each other, and k autonomous timing references
exist, one for each requester. Clocked designs introduce an
additional autonomous reference, the qlock.‘ Thus, k+1

%iﬁing references exist which must be ' synchronised with

respect to one another within the clocked circuit. For
example, when an asynchronous arbiter is idling, a single
request cannot cause metastable failure. In an idling
clocked arbiter circuit, a single request may cause
metastable failure when the reqguest is synchronised to the
- clock.

In conclusion, whilst the clocked design methodology is simpler than

asynchronous "design, a clocked design tends to suffer from a poorer

service and metastability performance.

- 8.1 -

CHAPTER 8

PERFORMANCE COMPARTSONS OF ARBITRATION DISCIPLINES

8.1 INTRODUCTION

Chapters 5, 6 and 7 presented results on the performance of batched
fixed priority and non batched fixed priority arbiters. In this chapter,
these rTesults are extended to encompass additional performance measures
and all the arbitration disciplines introduced in Chapter 2, with the aim
of comparing the performance of each discipline. The Markov analysis that
would be necessary to generate these results is too complex and difficult
in most cases and, consequently, Monte-Carlo techniques are employed in
this chapter. As discussed in Chapters 5, 6 and 7, the Markov analysis
yields practically identical results to the Monte-Carlo simulations when
sufficient service iterations are performed.

The disciplines examined in this chapter are all assumed to conform
to models ofn‘asynchronous arbiters developed in Chapter 4. Clocked
arbiters are not considered in this chapter due to their poorer
performance and =also greater complexity in modelling, as indicated in
Chapter 7.

The performance measures examined in this chapter include the
standard deviation of waiting times and the metastable failure rate. The
Monte-Carlo simulations employed to obtain the metastable failure rate are
based on analytical modelling and analysis techniques employed in
Chapters 3, 5 and 6. The results presented in this chapter are new in
that no previoﬁs study of arbitration disciplines has incorporated:

(1) non zero inter-service and inter-batch delays;

(ii) batched disciplines;

...8.2_

(iii) metastable reliability performance.
Some of the results of this chapter appear in [5].

The chapter is structured as follows E In Section 8.2, service
performance results are presented together with a brief description of the
Monte~Carlo simulation program. In particular, batched and non batched
disciplines are examined. In Section 8.3, the techniques for evaluating
the metastable reliability performance of disciplines are developed.
Also, the results obtained from Monte-Carlo simulations based on these
techniques are discussed and the metastable reliability performance of
each discipline is compared in Section 8.3. Results incorporate the
effects of inter-service and inter-batch delays likely to be present in
practical circuits and application. Finally, the chapter concludes in
Section 8.4 by summarising the performance comparisons and merits of

various disciplines.

8.2 SERVICE PERFORMANCE

In thi;” section, the service performance of the following
arbitration disciplines is examined : first come first served (FCFS),
batched fixed priority, fixed priority. next robin, batched next robin,
least recently used (LRU), batched LRU, batched forward robin and batched
reverse robin (both these non derived batched disciplines are discussed in
Section 2.4.4) and random priority (a non batched dynémic priority
discipline where highest priority is randomly and uniformly assigned and
lower priorities following modulo k). The disciplines fall naturally into
the two groups of batched and non batched. The timing model for the
batched fixed priority arbiter described in Section 4.3.2 is generalised
to any batched discipline by maintaining the definitions of Dl' D2 and

D3 and varying the order of servicing within a batch to follow the

- 8.3 -

required discipline. Similarly, the timing model of the non batched fixed

priority arbiter is extended to incorporate any non batched discipline

while maintaining the definition of D1 and D2 described in Section
4.4.2.

The Monte-Carlo simulations presented model the time durations Dl’
D2 and Dy (in batched disciplines) and arbitration disciplines in

software. Re-request times are generated using a standard uniform random
number generation function which is processed to obtain exponentially
distributed times of the required mean. Due to the relative insensivity
of the results to the service time distribution, only constant service

times are considered in the results.

8.2.1 Proportion of Time and Mean Waiting Time Results

Graph 8.1 shows the proportion of time allocated to a requester and
IDLE for FCFS wunder differing inter—service times. Graph 8.3 applies
to all non batched disciplines which are symmetric to all requesters, that
is, all non Eétéhed disciplines considered in this chapter except fixed
priority.

The results of Graph 8.4 show the time efficiency of the arbiter
when D1 and D2 are varied. For D1 = D2 = 1.00 less than half the
available time is spent servicing requests. Graph 6.1 also gives an
indication as to the request loading levels necessary to saturate the
arbiter on a "throughput" basis.

Graph 8.2 shows the corresponding mean waiting time for any
requester for all symmetric mnon batched disciplines. Significant
differences in performance can be observed for changes in the non ideal
modelling parameters D. and D2. Saturation in waiting times occurs at

1

larger request rates than is the case for proportion of time. For

- 8.4 ~

example, MWT starts levelling off when D1 = D2 =1 at a request rate of
approximately 0.5 requests per service time compared with a request rate
of 0.2 in the proportion of time and IDLE results of Graph 8.1.

Graph 8.3 provides a comparison between batched and non batched
arbiters implemented in logic with similar delay characteristics.
Assuming D1 + D3 of the batched arbiter corresponds to approximately D2
of the non batched arbiter, and D3 of the batched arbiter corresponds to
D1 of the non batched arbiter, then Graph 8.3 provides a realistic
comparison. These assumptions on Dl' D2 and D3 between batched and
non batched arbiters can be seen to approximately hold for the daisy
chained fixed priority arbiters discussed in Chapters 2 and 4. The reason
non batched arbiters result in extra waiting time is attributable to
"economy of scale" in servicing requests in batches of length greater than

one. Very little delay occurs between servicing within a batch as apposed

to consecutive non batched services.

- 8.5 -

PROPGRTION OF TIME FOR EACH REQUESTER

FLTS, S5 requesters
Constant service times, Monte-Carleo 20000 reg/point

>
(B—— 1dle time D1=0.0 D2=0.0
B all reg D1=0.0 D2=0.0
&--- dle time D1=0.2 D02=0.2
x it - F O D1=0.2 D2=0.2
S - »-—-— 1dle time D1=1.0 D2=1.0
T~ il req Di=1.0 D2=1.0
e
%
; &‘9‘-%9@-—*—-—»-——-%——--*-——-x_-—*-———x--—--x--—x—--—-x
; J
2-4 A _ g — OB O — O — —O— — B —

proportion of time for each requester

L - ST
+___.._*-_....-4....._.-.4....._. W e madee e = e ——

—_—— e —— ————— ——— — ————

T = B8 & 3
Sgo.0 8.5 1.0 1.5

request rote (requests/mean serv. timel

GRAPH 8.1

- 8.6 -

MEAN WAITING TIME FOR EACH REQUESTER

FCFS,

Constant service times,

5 requesters
Monte-Carlo 20000 reg/point

o
-

B—— MWT all regq
o G- ——- MWT all req

A--- MAT all req
- A
- A& 4 -
B
© -
-‘-
—‘.
A
r.. >
P
&
!
s
t.O"J s .

mean wairting time
5

¥ s

0.0 0.5 1.0

request rate (requests/mean serwv.

GRAPH 8.2

time)

1.

Constant service times,

mean warting time

- 8.7 -

MEAN WAITING TIME FOR ALL REQUESTERS

S regquesters

~1 [O—— Batched D1=0.2 02=0 03=0.

®——- Non batched Di1=0.20 02=0.

2
40

5.0 : 0.5 - 1.0

request rate (requests/mean serv.

GRAFH 8.3

t ime)

1.

Monte-Carlec 20000 reg/point

5

- 8.8 -

8.2.2 Standard Deviation of Waiting Time Results

As discussed in Chapter 2, if one considers the spread of waiting
times to indicate a level of "fairness", the STDW can be employed as a
measure of "féirness"- Symmetric disciplines give identical proportion of
time of mean waiting times to each requester but their STDW differs.
The standard deviation is difficult to compute analytically and so
Monte-~Carlo techniques are employed.

Graphs 8.4 and 8.5 show STDW(h) for each requester h in batched
fixed priority arbiters. It is interesting to observe that SIDW is
greater than STDW(h) for all h when the request rate exceeds 0.6 in
Graph 8.4. This occurg because the arbiter begins to settle inte the
alternating pattern of servicing the batch 1234 followed by 1235, causing
individual waiting times to be reasonably predictable and yet still a
large variation between different requesters’ waiting times exists.

Also, of interest are the cross overs in STDW(4) and STDW(5) at
A =0.6, and STDW(1) and STDW(2) at A = 1.0. This is a second order
effect not explained simply. At request rates below 0.6, requester 5 can
wait from zero to seven service times depending on the set of pending
requests at the time. As the request rate increases, the variability
decreases as the event of no requests pending becomes unlikely. The
variability for requester 4 decreases less rapidly with the request rate,
because the influence of requester 5’s request pending is mnot great
compared with vice versa. Requester 1 incurs greater variability in
waiting times as the batch size varies with time, while requester 2 is in
addition concé?ned with whether request 1 is pending which becomes almost
a certainty above 1 request/service time.

In Graph 8.2, the non zero inter-batch times cause a greater

variance in waiting times due to requesters 4 and 5 sometimes requesting

- 8.6 -

within the inter-batch times and considerably reducing their waiting
times. This added variance is reflected in all STDW(h) results.

Graphs 8.6 and 8.7 show STDW(h) for the fixed priority arbiter.
The results strongly reflect the priority structure of the arbiter and are
similar to MWT(h) results presented in Chapter 6, with mean and standard
deviation strongly coinciding.

As has been discussed in Chapter 2, FCFS minimises STDW and thus
FCFS is a useful lower bound on a discipline's STDW. For this reason
STDW is examined in Graph 8.8 for FCFS for varying inter-service times.
The peak STDW occurs at the onset of significant contention between
requests when the queue length varies considerably with time. The non
ideal delays D1 and D2 increase STDW because of the effective
increase in service time causing absolute waiting times to be magnified.

Graphs 8.9 and 8.10 compare all the disciplines with zero
inter-service delay on an STDW basis. As is proved in [S.1], FCFS
produces the smallest STDW of any discipline.

Of interest is the effect of applying batching to a discipline. For
fixed priority, the effect of batching is substantial, reducing an
unbounded increase in STDW to the more gentle rise of the batched fixed
priority as shown in Graph 8.9. Batching has little effect on next robin.
The example of batched and non batched next robin provides a
counter—example to a possible conjecture that batching always reduces the
STDW of an arbitrary discipline. Batched LRU has a smaller STDW than
LRU as is shown in Graph 8.10. Batching tends to apply a degree of
service ordering based on arrival times which more closely resembles
FCFS, and hence tends to reduce STDW.

The two non derived batched disciplines, batched forward round robin
and batched reverse round robin, are also compared in Graph 8.10 with the

latter producing a significantly smaller STDW for request rates above

- 8.10 -

0.5. As the reader may recall from Chapter 2, batched reverse round robin
increases priority modulo k after every batch. For example, if Tequester
2 has highest priority, then in the next batch requester 1 would be
allocated highest priority. Batched forward round robin permutes priority
in the opposite direction. When the arbiter is heavily loaded, a batch
sequence may proceed as in Figure 8.1 in the batched reverse case, and in

Figure 8.2 for the batched forward case.

WAITING TIMES

HIGHEST PRIORITY: 1 5 4 3 (Unit of
SERVICE: 123415123 |4512 | 345 | Service Times)
Req 1 1 I 1 1 - 1,33
Req 2 T T T 2,3,3
Req 3 T T i 3,3,3
Req 4 T 1 1 4,3,3
Req 5 1 1 T 2,3.3

FIGURE 8.1 Example of Batched Reverse Round Robin
Under Heavy Loading.

WAITING TIMES

HIGHEST PRIORITY: 1 2 - 3 4 (Unit of
SERVICE: 123412351 |3452 | 4513 | Service Times)
Req 1 T T 1 1,5,5

Req 2 T T 1 T 2,2,5

Req 3 1 1 T T 3,2,1,4
Req 4 1 T - 1 4,4,1

Req 5 T T T 4,2,2

FIGURE 8.2 Example of Batched Forward Round Robin
Under Heavy Loading.

Figures 8.1 and 8.2 show an arbitrary request sequence consistent with

heavy loading. Note that in the batched reverse round robin example,

- 8.11 -

services cycle in an orderly cyclic fashion with the lowest priority
requester in a batch given highest priority in the following batch. The
batched forward round robin discipline disrupts the orderly cyclic service
flow by assigning to the highest priority request, the lowest priority in
the following batch.. The large variations in waiting times give rise to a
large STDW in the forward discipline. As discussed in Chapter 2. the
mean waiting time% will be identical for both disciplines. 1In [C.5] a
batched forward round robin circuit is proposed without due consideration
for its performance. As has been observed here; a batched reverse round
robin discipline performs better from a service viewpoint and can be
implemented as simply.

Graphs 8.11 and 8.12 show batched disciplines with non zero inter-
batch times. It is interesting to observe that disciplines are affected
differently when inter-batch times are increasing. At moderate to light
request loading (O to 0.7 say). increasing Dl’ D2 and D3 results in
an increase in STDW, but at heavy request loading STDW for some
disciplines iﬂg£éases whilst others decrease.

The light to moderate request loading STDW 1increase can be
explained by the apparent increase in request contention caused by inter-
batch times diminishing available time for servicing. The heavy loading
behaviour of STDW is dependent on the saturation behaviour of each
discipline. For example, batched LRU and batched ne#t robin are not
significantly affected by increasing inter-batch times at heavy request
loadings due to their adaptive priority allocation schemes which naturally
promote a cyclic servicing order. Disciplinés which cannot adapt to
request patterns tend to perform worse. Batched reverse round robin
increases STDW under héavy loading and large inter—batch times, because

the cyeclic pattern of the servicing is disrupted by the last requester

serviced in a batch sometimes requesting within inter—batch times at the

B |

- 8.12 -

end of a batch and receiving an early service in the following batch.
Batched forward round robin is not as noticeably affected since it tends
to naturally disrupt the cyclic service stream anyway. Batched fixed
priority, as previously discussed, approaches a more cyclic service
pattern as inter-batch times increase under heavy request loading.

Since direct comparisons between batched and non batched disciplines
with non zero inter—service and inter-batch times is difficult, the non
batched disciplines are treated separately.

Graphs 8.13 and 8.14 show such STDW results for non batched
disciplines. The light and moderate request loading STDW values
increase as intermservicé times increase for the following reasons: The
waiting tiﬁe for a request during an idle period is zero, and during the
service of another request is at least the remaining service times plus
inter—-service times. Since idle periods occur reasonably frequently under
light and moderate request loading conditions, zero waiting times will
occur a reasonable number of times. The range of possible waiting times
extends from zero to those including other service times. That is, the
variance is increased by the additional delay due to inter—service times.

In heavy request loading conditions the effect on the spread of
waiting times is less significant because the inter-service delay is
incurred on almost every waiting time. The peak STDW is, thus,
increased roughly in proportion to the ratio of D2 to service time. For

example, from Graphs 8.9, 8.13 and 8.14, FCFS has the following maximum

for STDW:
(i) bl = D2 =0 ymaximum of 0.9;
(ii) Dl = D2 = 0.2 ,maximum of 1.1;
(iii) D1 = D2 = 1.00 ,maximum of 1.85.

At heavy request loadings, little difference in STDW can be observed.

- 8.13 ~

STANDARD DEVIRTION OF WRITING TIME

Batched fixed priority, 5 requesters, D!=0 02=0 D3=0
Constant service times, Monte-Carlo 100000 req/point

=]
’
(4]

standard deviation of waiting time

©g.0 0.5 1.0 ' 1.5

request rate (requests/mean serv. time)

GRAPH 8.4

- 8.14 -

STANDARD DEVIATION OF WRITING TIME

Batched fixed priority, 5 reguesters, D1=0.2 D2=0.2 D3=0.
Constant service times, Monte-Carlo 30000 req/point

(=]
.
o~ L

o
.
o]

1

4

1.

standard deviation of waiting time
0.8

“o.0 ‘ 0.5 1.0 1.5

request rate (requests/mean serv. time)

GREAPH 8.5

- 8.15 -

STANDARD DEVIATION OF WAITING TIME

Fixed priority, S requesters, 01=0.00 02=0.00
Constant service times, Monte-Carlo 30000 reg/point

S -
r g
x ! /[5-—— req. |
! &——- regq. 2
| / A--- reg. 3
,‘ / +— = feg. 4
v : J Y¥-r—-— reg. 5
S / /| &—=- all reg]
o !'
g I T
3 | / /
B [}
; /
5 | /
5 = I 7 i
; fo ,
E 1 A
/ /%z/ a=’
£ :f .
/ AT
; [-
3 ¢ %
§ - // Lo *
z ! T
’
s
! ‘-’"
ﬁ%‘éw ;‘_g_g_._g.-m-g——e-—-e—-e—-j--o——a-——-e-——o——eb
- B £ 1= -5 S ——
0.0 0.5 1o 1.5

request rate (requests/mean serv. time)

GRAPH 8.6

- 8.16 -

STANDARD DEVIATIGN OF WAITING TIME

S5 requesters, D01=0.20 02=0.20
Monte-Carlo 30000 reg/point

Fixed priority,
Constant service times,

&
(]
I p
4
‘f
¢
’ F—— reqg 1
” &——- reg. 2
" &--- regq. 3
+— — req 4
A Yr—r— peg S
’ &—— - all req

standard deviation of wairting time

1.0

request rate (requests/mean serv,

GRAPH 8.7

t imel

.5

- 8.17 -

STANDARD DEVIATION OF WARITING TIME

ECES, S5 requesters
Constant service times, Monte-Carlo 20000 reqg/point

o

P — -
[B—— STD all req D1=0.0 D2=0.0
©——- STD all req 01=0.2 D2=0.2
A--- STD all req 01=1.0 D2=1.0

standard deviation of waiting time

o.0 0.5 1.0 1.5

request rate [(requests/mean serv. time)

GRAPH 8.8

standard deviation of waiting time

Constant service times,

o
L
(2]

1.

a.6

0.4

0.2

- 8.18 -

STANDARD DEVIATION OF WRITING TIME
5 requesters, 01=0.00 D2=0.00

[B—— FCFS
& ——=Fixed priority
A--- Batched fixed priority

s == Nt robin
»%--—=-— Batohed nex¥ robin
E
0.0 0.5 Lo .

request raote (requests/mean serv. time)

GRAPH 8.9

Monte-Carlo 30000 reg/point

5

— 8:19 —

STANDARD DEVIATIONWN OF WRITING TIME

S requesters, 01=0.00 02=0.00 D3=0.00
Constant service times, Monte-Carlo 30000 reg/point

a

1.

6

1.

4

1.

0.8

& ——= Batched LBU

standard deviation of waiting time

;- A --+- Boatched forward round robin
+— — Batched reverse round robin

il »-—-— Random priority

S 4

7

S0.0 0.5 1.0 1.5

request rate (requests/mean serv. time)

GRAPH 8.10

Constant service times,

standard deviation of waiting time

(=]
Ll
[y

@
.
-

1.

0.2 0.4 0.6 a.8 1. 1.2 1.4

0.0

- 8.20 -

STANDARD DEVIATIGON OF WRITING TIME

5 regquesters, D1=0.2 D02=0.2 D03=0.2

Monte-Carlo 30000 reg/point

(4——— Batched fixed priority

1 & ——- Batched next robin

A - - - Batched LRU

+— — Batched forward robin
4 H-~—-— Botched reverse robin .
0.0 0.5 1.0

request rate [(requests/mean serv. time)

GRAPH 8.11

1.5

Constant service times,

standard deviation of waiting time

o
<

w
o

2.8 3.2

2.4

(=2
L
(=1

- 8.21 -

STANDARD DEVIATICGN OF WRAITING TIME
S5 reguesters, D1=1.00 02=1.00 D3=1.00

Monte-Carlo 30000 reqg/point

[B——— Batched
G-——- Batched
A - -- Batched
+— — Batched
A--—-— Batched

fixed priority
next robin

LAU

forward robin

reverse rsbin

0.0

0.5

1.0

request rate (requests/mean serv. time)

GRAPH 8.12

1.5

Constant service times,

standard deviation of waiting time

o
.
™

[}
.
-y

1.

0.8

0.2 0.4 0.8

0.0

= Budd F

STANDARD DEVIATION O8F WAITING TIME

5 requesters, D1=0.20 02=0.
Monte~Carlo 30000 reg/point

20

—

¥ g FLF3
g G-——=-Fixed priority
b A--- Next robin
3 +— — LRU
, »X--—-— Random priority

0.0

0.5 1.0

request rate (regquests/mean serv.

GRAPH 8.13

t 1me)

1.5

- 8.23 -

STANDRRD DBEVIATIGON OF WAITING TIME

5 requesters, 01=1.00 D2=1.00
Constant service times, Monte-Carlo 30000 regq/point

-
I ¥
@ [¢
N
'
al 1l
|
© Q[
o | ¢
:!-+*¥
- | +
e li-/;"‘&‘\ 4
" '] &\
¥4 .
2l > J

standard deviation of waiting time

© *

S 1 @—— FCFS T~ :
G——-F ixed priority

- &--- Next robin

S apees omes LR)

X--—-— Random priority

9g.0 0.5 1.0 1.5

request rate (requests/mean serv. timel

GRAPH S.14

= 8.24 -

8.3 NORMALISED METASTABLE FAILURE RATE PERFORMANCE

In this section NMFR results generated by Monte-Carlo simulation
are discussed. The simulation approach is based on evaluating the failure
rate by counting the number of requesters that could cause failure by
requesting within an aperture at the beginning of each state. The

technique is similar to that employed in Chapters 5 and 6.

8.3.1 Determination of NMFR for each Discipline

The number of aperture events occurring per state is a function of
the implementation of an arbitration discipline. For example, in
Chapter 7 it has been found that a clocked arbiter may have a different
metastable reliability performance to an asynchronous arbiter implementing
the same discipline. Certain assumptions regarding the occurrence of
aperture events are made in order to model asynchronous implementations of
disciplines. In Chapter 7 results are presented that indicate superior
metastability performance may be obtained with an asynchronous design
compared to a-;iocked design. For this reason asynchronous arbiters are
modelled in this section. The modelling assumptions are first stated
below and then discussed.

(i) All request rates are equal.

(ii) The metastable characteristics of request storage elements in

the arbiter implementation are identical.

(iii) A state of a non batched discipline, when referred to as a
period of time, includes a decision point followed by the
service of one of the requests pending at the decision point.
In a batched discipline, the state also includes the service

of the remaining requests pending at the time of the decision

point.

- 8.25 -

(iv) An aperture occurs immediately following a decision point.
No other apertures occur. Only the asserting of a request
during an aperture can cause failure of the arbiter.

(v) An aperture event occurs when a requester

(a) has no request pending at the decision point; and
(b) would cause failure of the arbiter if it asserted a
request during the aperture.

(vi) The number of aperture events associated with each decision
point is dependent on the discipline.

(vii) For disciplines where the service decision is based on a
linear priérity ordering (i.e. fixed priority, dynamic
priorities and batched versions of these), the number of
aperture events is the number of requesters with priority
higher than the highest priority request pending at the
decision point.

(viii) FCFS is assumed to be implementéd with a dynamic priority
;écondary arbitration discipline, such as in [S.1]. The
number of aperture events at a decision point for FCFS is
zero if the previous state is not the idle state. The number

of aperture events after an idle period is the same as would

be the case in the secondary dynamic priority discipline.

Assumption (iv) is a property which a well designed asynchronous arbiter
is expected to conform to. The asynchronous examples of fixed priority
and batched fixed priority studied in detail in Chapters 2 and 4 are only
vulnerable to metastable failure at the beginning of a state. The

disciplines studied in the NMFR results can be considered to be

- 8.26 -

variations on these circuits in that priority is allocated dynamically
through some storage mechanism in the circuit. The allocation of priority
is assumed to be based on stable past information, such as the previous
service history, and socannot contribute to metastable failure. An
exception is FCFS which effectively allocates priority based on the
arrival order of requests and consequently the mechanism itself for
allocation of priority cam be prone to metastable behaviour. This is
discussed below.

Assumption (vii) is a generalisation of batched fixed priority and
non batched fixed priority NMFR derivations described in Chapters 5 and
6. It relies on the notion that low priority requesters are masked by the
circuit state. Any metastable behaviour in the associated low priority
storage elements will not be seen at the outputs of the arbiter for a
considerably longer period of time than the nominal shortest settling time
allowed by the circuit.

Assumption (viii) and (iv) with regard to FCFS are now discussed.
Consider the éituatioﬁ of at least one request pending before the end of a
non zero state. Any further requests will be serviced at earliest after
the next service, assuming pending requests have been registered within
the arbiter circuit. The mechanism that orders requests based on their
arrival times ,that is, the secondary arbitration circuit in [S.1]. is
vulnerable to metastable behaviour. If the arbitration for the position
in the request queue occurs when requests are already pending, the time
before this arbitration decision directly affects the service order is at
least one sef%?ce time. It is assumed here that the secondary discipline
allows more time for metastable settling when the request queue is not

empty since more time is available without delaying the servicing of any

request. Thus, apertures need only be considered when the queue is empty.

- 8.27 -

The aperture events that are counted correspond to a Tequest occurring

during an idle period. It is assumed that the aperture position occurs a

time D1 after the first request to end an idle period as shown in
Figure 8.3.
Aperture
IDLE | Py % .
T T T
1

first request

FIGURE 8.3 Aperture Position for FCFS (not to scale).

Firstly, all disciplines wiﬂnha priority structure are examined,
excluding FCFS. The priority of requester h is denoted pr(h) and the
highest priority requester in state i is denoted hp(i), where the state
is the set of pending requests at the decision point. The sum of the
request rates-of requesters that can cause failure by requesting within
the aperture at the beginning of a state is denoted apert(i), and for

priority structured disciplines, is given by

apert(i) E Rh (8.1)
heA

where

b
1]

{h : pr(h) < pr(hp(i))}

Equation (8.1) is a generalisation of equations (5.49) and (6.21).
Eguation (8.1) applies to both batched and non batched disciplines, with
decision points occurring at the start of each service for non batched

disciplines and at the start of each batch at for batched disciplines.

- 8.28 -

For FCFS, the number of requesters which can cause failure by
requesting within the aperture of Figure 8.3 is now considered. The
secondary discipline chooses one requester of all pending requests to be
serviced immediately after D1 has elapsed. Suppose a dynamic priority
secondary discipline is employed, as suggested in [S.l]l. The requesiers
with higher priority than all pending requests are the only candidates to
cause metastable failure by requesting within the aperture. All others
are assumed to be masked out because of their lower priorities. If all
request rates are equal, then following an idle period every requester is
equally likely to have a request pending at the end of Dl' Since the re-
request time distributions are exponential, during an idle period the
request behaviour is independent of all past history. Each requester is
statistically identical since they are memoryless and have the same
request rates. Without loss of generality, the requesters are labelled in
order of their priority at the decision point following the idle period,
with the highest priority requester labelled 1. The situation is thus
equivalent to fixed priority at the end of an idle period. The set of
requests pending at the end of D1 is a random sample of the k requesters,
each having equal probability. For a state following an idle period the
number of aperture events (i.e. the number of requesters which can request
within At of Figure 8.3 and cause failure) is the number of requesters
without requests pending and priority higher than all requests pending.
If |i| requests are pending and the state i follows an idle period, the

mean number of aperture events is:

1Not all disciplines can be described by a dynamic priority scheme. For
example, a 3 input arbiter may allocate the resource to 1 when 1,2 are
pending, 2 when 2,3 are pending and 3 when 1,3 are pending.

- 8.29 -

i R
apert(i) _

:] o
1

+
+

where Ei] is the number of ways of choosing m items from n. When state i
does not follow a zero state apert(i) is defined to be zero. Equation
(8.2) simplifies to (k-1)/2 when [i] is 1 which is a good
approximation when D1 is small. Equation (8.2) also applies to FCFS
arbiters, such as the example shown in Figure 2.13, where the queue
ordering is determined directly by the use of k(k-1)/2 RS flip-flops
(one for each pair of requests) which are set/reset depending on the
arrival order of requests. This arbiter can be modelled with D1 as zero.
(A practical asynchronous FCFS arbiter based on Figure 2.13 would be
modified to ensure the combinational logic resolved circular orderings
described in Section 2.5, and also tq allow for an adequate metastable
settling time). Suppose Dl = 0 and failure occurs when two requests
occur within -At of each other. The number of possible pairs of requests
is k(k-1)/2. The number of possible states over which these apertures
are to be counted is k, where singleton states only are counted since
D1 = 0. This gives (k-1)/2 apertures per state which agrees with (8.2)
when |i| is one. :

Once the "apert” function is defined for all disciplines the NMFR

can be obtained from equation (5.54) and found to be

m-1
i 2 apert(i) n,
NMFR = 11 (8.3)
T o
J J
J=0

vhere nj is the number of states j and t, is the mean duration of

state J.

- 8.30 -

8.3.2 Discussion of NMFR Results

Equations (8.1), (8.2) and (8.3) have been applied in the
Monte-Carlo simulation program and Graphs 8.15, 8.16, 8.17, 8.18, 8.19,
8.20 and 8.21 show the results.

Graphs 8.15, 8.16 and 8.17 show NMFR for all the disciplines with
zero inter—service and inter-batch times. Fixed priority and random
priority disciplines performed poorly at high request rates due to
aperture events persisting above saturation levels of requests. In other
disciplines at heavy request loadings, the arbitration disciplines tend
not to give priority to recently serviced requesters which are more likely
not to have pending requests. That is high priority is more likely to be
given to pending requests which cannot cause failure. The priority is
such that low priority tends to be assigned to recently serviced
requesters. This occurs explicitly in LRU and indirectly in round robin
schemes where the priorities encourage servicing to occur in a cyclic
fashion.

All disciplines have approximately the same NMFR for light request
loadings - a common feature of all the NMFR results. The similarity
follows from the fact that little correlation exists between priority and
Tequest arrivals since the arbiter cannot utilise previous history in
masking synchronisation failure as occurs at heavy loading. Little
interference between arrival times of requests occurs because very little
contention is present at low request rates. Thus, the request input
process is approximately Poisson and consequently the past request/service
history is of little use in predicting future arrivals. For these reasons
at low request rates a fundamental NMFR is suspected, independent of
arbitration discipline. It is shown here that for all disciplines

considered in this chapter the light loading NMFR's coincide.

- 8.31 -

The arbiter alternates between idle and singleton service as shown

in Figure 8.4 for the non batched arbiter model.

service | D2 ' idle [Dl ' service ;| "2 l idle

S T S

request

FIGURE 8.4 Low Request Rate Service Pattern for Non Batched Arbiters.

The mean idle period is 1/kA. For A (K % the mean rate of singleton

services is approximately

2 Ty

[i]=1 o 1
m—1 = 7 e I & - (8.4)
= + = + +
En't' KN 1 p T2 3
hh
j=0 -

where D3 = 0 for non batched arbiters.

As follows from the previous section, under light request loading

conditions apert(i) = [k ; 1} A for |i|l = 1. It follows that

k- 1
= 7\[2] (8.5)

. 1
o gt By ey

12

2 k(k - 1) 1 1
A 5 for {5 > BI-+ D1 + D2 + DB] (8.5a)

Equation (8.5a) can be seen to be a good approximation in Graphs 8.15,

8.16, 8.17, 8.18 and 8.20 for A < 0.1 and in Graphs 8.19 and 8.21 for

A < 0.05.

- 8.32 -

Another common feature of the NMFR results is that the peak
fajilure rate occurs at approximately the onset of saturation [7\ o k_i_l]
in all disciplines excluding fixed priority and random priority. At peak
fajlure rates, the arbiters are resolving maximum contention between
Tequesters. At heavy request loadings the request pattern is dictated
more by the order of service and the arbiter can use this information to
effectively reduce the rate of aperture events.

In the ideal case of zero inter-service and inter-batch times, it is
clear from Graphs 8.15 and 8.16 that all batched disciplines have a
smaller NMFR than the corresponding non batched disciplines at moderate
to heavy request loadings-.. This result can be attributed to two factors

(1) batched disciplines have a lower rate of decision points

where apertures occur, and

(ii) the number of aperture events at each decision point is

likely to be smaller because the duration between decision
points is longer, increasing the number of pending requests.
].‘-ic;vr.e pending requests results in greater metastable masking
and less candidates for requests during an aperture.
The order of "merit" , based on magnitude of NMFR, is FCFS, batched LRU
and batched next robin (approximately equal), batched fixed priority and
LRU (approximately equal), batched forward robin, batched reverse robin,
random priority and worst of all, fixed priority.

The NMFR performance of batched reverse robin at heavy request

rates deserves some comment. At first one may be perplexed by the
apparent poor performance, after studying Figure 8.1. However, other
"modes"” of operation are ©possible at heavy request loadings as

illustratated in Figure 8.3, where NMFR 1is large.

HIGHEST PRIORITY 1 5 4 3
SERVICE: 245 (1234151234512

Req 1 1 1 T
Req 2 1 T i 1
Req 3 1ot T T

Req 4 T i I

Req 5 E |

FIGURE 8.5 Alternative Low STDW Example of Batched
Reverse Round Robin with Large NMFR.

In Figure 8.5, the second highest priority requester is serviced first in
each batch since the highest priority request is serviced last in the
previous batch and cannot request before the batching point. As a result,
an aperture is presented at the beginning of each batch where the high
priority requester can cause failure. Because the "mode™ of the behaviour
is largely determined by initial request conaitions under heavy request
loadings, the -observed fluctuation in the NMFR results occurs in
Graphs 16, 18 and 19. Similar behaviour does not occur in batched forward
round robin because the highest priority requester in the next batch has a
second highest priority in the current batch and consequently is very

likely to request before the batching point as can be seen in Figure 8.2.

normal 1sed metastable failure rate

- 8.34 -

NORMALISED METASTABLE FAILURE RATE

5 requesters, 01=0.00 302=0.00
Constant service times, Monte-Carlo 30000 reg/point

-
S -
I
{ B——— FLF5
P4 i ®&-——-Fixed priority
S 1 I & - -- Batched fixed priority)
¢ +— — Next robin
X ! »#--—-— Batched next robin
3 | :
|
g ! & A
o 9 * 4 ¥ E
‘ .
‘!f +\\
g l"+/x k\
5 1 SN J

Q.15
8-
-~

/x

. /
'F

= ; L
UJ 5(\\ ~)

LY -

N« -
W N .
cJ 5 .x'._ ® 4
4 \ g e

a
K“-:*"‘ Tea
= x“‘-:? oy - T &
[~] ""--*_ T md
d 3 r PO s i TR
0.0 0.5 1.0 1.5

request rate (requests/mean serv, timel

GRAPH 8.15

normal 1 sed m‘etastable failure rate

- 8.35 -

NORMALISED METASTABLE FARAILURE RATE

5 requesters,
Constant service times,

01=0.00 D2=0.00
Monte~Carlo 30000 reg/point

4——— LRU

G-——~ Batched LAU
1 A - -+« Batched forward round robin
+— — Batched reverse round robin

0.15 a. 20 0. 25 0. 30 .35

10

g.as

a.ao

0.0 0.5

1.0 1.5

request rote [(requests/mean serv. time)

GRAPH 8.16

normal ised metastaoble failure rate

Constant service times,

1.

1.

0.2

- 8.36 -

NOCRMALISED METASTABLE FAILURE RATE
5 requesters, 01=0.00 D2=0.00

(B—— F ixed priority D
& ——- Random priority
- ____@__..--IU
}{p T Tty g — - —F -
i
0.0 0.5 1.0 R

request rate (requests/mean serv. time)

GRAPH 8.17

Monte-Carlo 30000 reg/point

5

normal i1 sed metastable failure rate

- 8.37 -

NORMALISED METRSTRABLE FAILURE RATE
5 requesters, D1=0.20 D2=0.20 D3=0. 20

Constant service times, Monte-Carlo 30000 req/point

0.20 0. 25 0.30 0.35

0. 15

as

0. 00

0.10

’ [B——— Batched fixed priority
B—~—- Batched next robin

' A--- Batched LRU

] +— — Batched forward robin]
X-—-— Batched reverse robin

request rate [requests/mean serv. time!

GRAPH 8.18

normal 1sed matastoble failure rate

= B:38 ~

NORMALISED METRSTABLE FAILURE RATE
5 requesters, 01=1.00 D2=1.00 D3=1.00

Constant service times, Monte-Carlo 30000 reg/point

.07 0.08 0.0G83 0.10

g. 08

0.0} 0.02 0.03

0.00

0. 08

0.04

[F——— Batched fixed priority
J G-——- Batched next robin .
A - - - Batched LRU
+— — Batched forward robin
: . H-—-— Batched reverse robin .
4 J
i J
J

request rate (requests/mean serv. timel

GRAPH 8.19

normolised metastable failure rate

- 8.39 -

NORMALISED METASTABLE FAILURE RATE

5 requesters, D01=0.20 D2=0.20
Constant service times, Monte-Carlo 30000 reg/point

-
C:‘; o L3
l
/ [B—— FLFS
® / G——-Fixed priority
S 1 P A--- Next robin '
{ = == LRl
o] X-—-— Random priority
o j]
i
) AN 4
a i --?c ™ o=
f{ -“"’—-._*____*_____}é.—--'*"--_*-—/
& [[4
E’. AN
o4 ¢ a)
é?} » \\
o ¥ “
g-l fr L% —\ 4
\‘\ ‘\
w0 LS
Q RS LS
c::‘J A \+ 4
) ‘A\?-+“x
S T e
o o 7 B w m o mC e e e gy
0.0 a.5 1.0 1.5

reduest rate [(requests/mean serv, timel

GRAPH §.20

normal ised metastable failure rate

- 8.40 -

NGRMARLISED METASTABLE FAILURE RATE

S requesters, Di1=1.00 D2=1.00
Constant service times, Monte-Carlo 30000 reg/point

o

~a

& - - —
O—— FCFS

@ G ——- Fixed priority

s A --- Next robin
+— — LRU

e ¥--—-— Bandom priority

“ .

S 4

in

e]

S -

(=}

(%]

=i -

’f. '__‘_e___._e——-—-‘s—'—“‘ﬁ—-._e_____&_-__e__“t-

s

o

u

f=]

o

[=]

(=]

a‘ o

GRAPH 8.21

~ 8.4] -

8.4 CONCLUSIONS

The performance of a wide range of disciplines has been compared
when all requesters have the same characteristics. The results contain a
large amount of information which is briefly summarised here.

The discipline with the best performance is FCFS, both from a
metastable failure rate viewpoint and service viewpoint. This assumes the
inter—-service times D1 and D2 can be made small which could prove a
problem when secondary arbitration is employed in an implementation. As
discussed in Chapter 2, FCFS 1is one of the most complex disciplines to
implement. A good compromise in complexity and performance may be the
disciplines batched LRU and batch next robin, both offering good service
and reliability performance.

It has been found, generally, that batched disciplines offer
advantages over their primary non batched disciplines, both in terms of
utilisation efficiency and performance, and their metastable failure rate
characteristics. As discussed in Chapter 2 batched disciplines involve
the addition-'af minimal extra hardware compared with the primary
discipline.

Disciplines that have revealed very poor service and reliability
performance are fixed priority and random priority, which unfortunately
can be attractive from a hardware simplicity viewpoint. Random priority
has been implemented in an approximate form [M.1] using a rapidly rotating
- grant signal. Such schemes have potentially very poor metastable failure
rates because of both their inherent quasi-random priority and the

necessity for- very short metastable settling‘ time allowances in each

module to maintain a fast rotation of the grant.

- 8.42 -

It has been found that at light request rates, a fundamental NMFR
exists independent of the discipline, which is proportional to the square
of both the request rate and number of requesters in the arbiter. Also,
for disciplines with reasonable NMFR performance at heavy request
loadings, a peak failure rate existg corresponding to the onset of
saturation of requests. The peak occurs approximately at request rates
that could fully utilise the resource with no waiting times under
orchestrated deterministic requesting conditions. Random non determin-
istic request behaviour at the same mean rate results in contention and
less utilisation of the resource.

The effect of non ideal inter-service times has been found to affect
both service performance and metastable failure rate. Increasing the
relative inter-service delays, results in poorer utilisation and service
performance. However, somewhat surprisingly, the metastable failure rate
decreases with increasing inter-service delays. Purposeful introduction
of inter-service delay as a means for decreasing the failure rate is only
recommended if the delay directly increases the settling time given to

synchronising elements.

- 9.1~

CHAPTER 9

OONCLUSTIONS AND EXTENSIONS

9.1 SUMMARY AND CONCLUSION

In this thesis, new techniques and results have been developed for
the modeliing and analysis of the performance of arbiters. Both service
performance and metastability performance have been considered. An
important contribution of the thesis is the inclusion of the modelling and
analysis of the performance of arbiters with Tespect to metastability of
devices employed within them. The metastable performance of arbiters has
not been previously considered in published work on arbiters. The results
on metastability performance apply to a class of digital circuits
susceptible to metastable behaviour which includes arbiters as a special
case. In summary, the main contributions of this thesis are as follows :
(i) A mew class of arbiters referred to as batched arbiters is
identified. Examples of batched arbiter implementations have been
presented from which general timing models have been developed.
The bafcﬁing concept can be applied to any arbitration-disciplines
to generétg a new derived batched discipline. The thesis
demonstrates a simple method of implementing the batched version
of a discipline by employing a wired-or common line to facilitate
a lock-out mechanism on new requests. The technique is
particularly suitable for distributed designs.

(133 New lndaels for practical arbiters have been developed. These
models incorporate the effects of circuit delays and other non

ideal characteristics, through the inclusion of inter-bateh and

(iii)

- 9.2 —

inter—service time durations. The models have been shown to apply
to several practical arbiter circuits, including centralised,
decentralised, asynchronous and clocked arbiters.

The service and ‘utilisation performance of arbiters havg been
analysed with new analytical tools developed in the thesis.
Imbedded Markov chains form the basis of the analytical techniques
which permit arbitrary service time distribution and allow diverse
applications to be accurately modelled. The analysis of batched
and non batched fixed priority disciplines has been performed.
The thesis has also indicated methods for extending this analysis
to more general'disciplines, such as dynamic priority, by adding
further dimensions to the state definition. The analysis gives
insight into behaviour which, in hindsight, can be explained in
physical terms. The analysis technique has been shown to produce
interesting limiting results wunder 1light and heavy request
loadings. These results have been verified from computer studies
of the Markov analysis and also independently via Monte-Carlo
simulation. Service performance results of practical interest
have been presented which include mean waiting times, which is a
measure of response time, and proportion of time allocated to each
requester, which is a measure of throughput. It has been observed
that the properties of these measures is quite different when
viewed from various "fairness" aspects. The ultimate limitation
in the Markov analysis 1is the exponential re-request time
distribution assumption. Also, the exponential increase in number
of states with the number of requesters is a practical

camputational constraint.

(iv)

- 8.3 -

Fundamental issues concerning metastability in digital systems,
and arbiters in particular, have been examined. Metastable
reliability of arbiters has been highlighted as an area in need of
careful attention and design consideration. The thesis has

contributed in the following areas of the study of metastability :

(a) The aperture model has been developed for metastable
reliability evaluation. The model has been justified in
theoretical terms and from published experimental results on
many commonly employed flip-flops, latches and synchronising
elements.

(b) Several schemes aimed at improving metastable reliability
have been evaluated in this thesis. The use of pausable
clock schemes is questionable due to the unreliability of
metastable detectors and resulting reduced noise margins.
Synchronisers employing Schmitt triggers have been shown to

ﬁéfform less reliably, mainly due to the critical 1loss in

allowed settling of the circuit compared to a simple
synchroniser. Synchronisers designed for fast resolution to
valid logic states have been concluded to offer an
improvement, providing rigorous testing and verification is
performed. Metastable reliability is not improved, however,
when the remaining logic is also upgraded in speed with the
same fast devices, as may occur in future technologies.

‘Should a fundamental limit in logic speed be reached, other

techniques need to be considered. The most reliable scheme

at present may be to employ a simple synchroniser with

adequate provision for settling time.

(d)

= 9.4 ~

Previous results of Marino, Hurtado and Elliott [H.4, M.4] on
the unavoidability of metastable behaviour have been extended
in Theorem 3.1 of this thesis. The classification of the
sets of possible input functions that give rise to
metastability has‘ been generalised to apply to practical
digital signals. Theorem 3.1 of the thesis states that
provided the set of possible input functions is connected and
contains inputs which drive the system to two stable states,
then metastability is unavoidable. Examples have been
presented to illustrate the theorem. For example, it has
been shown that a two input arbiter with asynchronous
requests restricted to certain minimum rise and fall times
cannot avoid metastable behaviour regardless of the physical
realisation of the arbiter. These results on unavoidability
of mgtastable behaviour have an important impact on digital
design.

I;Vhas been proved, using the aperture model for a basic
synchroniser and reasonable assumptions on combination logic,
that redundancy and masking techniques are ineffective in
improving the metastable reliability of synchronisers. It is
well known that it is possible to improve reliability with
respect to component failure by employing the same redundancy
and masking techniques. The result establishes that
metastable failure and component failure cannot be treated in
an equivalént manner in terms of their characteristics nor
techniques of analysis. For example, metastable behaviour
cannot be treated as a transient component failure, even

though the two may appear, on first inspection, to be

similar.

(v)

=a8Lh =

The metastable reliability performance of arbiters has been
analysed for all. disciplines treated in the thesis. Both
asynchronous and clocked implementations have been examined. From
a circuit design -viewpoint, the critical parameters that affect
the metastable reliability have been identified as the allowed
settling time within the circuit, and time constant of the basic
synchronising element employed. It has been observed when
examining resetting strategies for clocked arbiters that careful
examination of all possible synchronising modes is necessary, due
to the presence of subtle and obscure failure possibilities.

It has been‘noted that asynchronous arbiter designs can offer
metastable reliability advantages over clocked designs. The
clocked designs examined in Chapter 7 are susceptible to
metastable failure when request inputs are reset after a service.
This problem has been found to be absent from corresponding
asynchronous arbiter designs presented in this thesis.

Monte-Carlo and Markov analysis techniques have been employed

to examine a normalised metastable failure rate for the

‘arbitration disciplines under certain reascnable assumptions. The

results have shown that all disciplines, except the poorly
performing fixed priority and random priority schemes, have a peak
failure rate that occurs at the onset of request saturation of the
arbiter. The peak failure rate is associated with maximum
contention of requests for the resource.

At light request loadings, a fundamental normalised
metastable failure rate has been derived which is identical for
all disciplines examined in the thesis. This NMFR is proportional

to the request rate squared and the number of requesters squared.

(vi)

(vii)

- 9.6 -

It has been found that the first come first served
discipline has the lowest NMFR of all the disciplines discussed in
the thesis. However, this discipline is difficult to implement.
Other disciplines more amenable to implementation and with good
NMFR performance have been found to be batched least recently
used, and batched next robin.

It has been noted that batched disciplines perform better
than the primary non batched counterparts on a NMFR basis.

Results comparing the service performance of all the disciplines
have been presented in the thesis. The results of the standard
deviation of wéiting times indicate that batched diciplines
usually have a lower standard deviation of waiting times compared
with their primary non batched counterparts. The first come first
served discipline has the lowest STDW; followed by batched LRU;
LRU and next robin and batched next robin (equal); batched reverse
robin; batched forward robin and batched fixed priority; random
priori;j and; finally, fixed priority.

The effect of increasing inter-batch and inter-service delays has
been shown to degrade service performance, and improve the NMFR.
Increasing inter-batch and inter-service times has been.
recommended as a means to improve NMFR performance only when the

allowed metastable settling time is directly increased.

- 9.7 -

9.2 SUGGESTIONS FOR FURTHER RESEARCH

carried out in_the thesis

(1)

(i1)

(iii)

There are several interesting extensions arising from the research

In the Markov analayis of the batched and non batcﬁed arbiters
request rates are not assumed to be equal. In order to limit the
large number of possible combinations of parameters in presenting
the numerical results, balanced request loading has been assumed.
While this assumption is representative of many systems of
interest, relaxing the balanced request rate assumption may be
necessary to model unbalanced requesters. The effects of biasing
request rates would be of interest. For example, it is quite
conceivable that fixed priority may perform better under these
conditions.

In studying the NMFR of arbiters, it has been assumed that all
flip-flops have identical metastable characteristics. This
assumé:tl;on is useful in examining a symmetric arbiter land also
because it simplifies the analysis considerably. In pfactice,
some variations will occur between flip-flop characteristics and
it would be of interest to examine the sensitivity of the NMFR to
such changes for various implementations. One could optimise the
performance by permuting a given set of flip—-flops if such results
were known.

It has been suggested in this thesis that the Markov analysis can
be extended to any non batched and batched disciplines with Markov
state representations. This has been left for future work.

Suggestions as to an appropriate state representation have been

made in Chapter 4.

(iv)

(v)

(vi)

(vii)

- 9.8 -

More complex performance measures may be able to be derived
theoretically and their properties studied. For example, in the
thesis_standard deviation of waiting times results are generated
by Monte-Carlo simulation. A theoretical derivation may reveal
further results.

The modelling of re-request time distributions has been restricted
to exponential distributions. The exponential assumption
successfully models many requesters, however, in practice the
re-request distribution may be quite complex and dependent of the
particular application. Although it is difficult to relax this
assumption, simuiation studies may be employed to estimate the
effect of more accurate modelling.

The impact of arbiter performance on global system performance
measures, such as completion time of a process or system response
time to users, is an area for future research. Existing research,
for example in [C.11, G.4, H.2, M.5], on system performance
analyéis do not examine the effect of differing arbitration
disciplines.

Further research is suggested in the area of metastable modelling.
For example, the effect of cascading flip-flops on metastable
performance is not clear. Also, the consequences of undefined
inputs, due to metastable behaviour of the driving devices, on
various logic elements is not understood nor widely addressed in
the literature. It bhas bheen reported that mysterious system

crashes are possible [C.8, C.9], but few, if any, well documented

case studies exist.

(viii)

(ix)

9.9

Scope for further research exists in the area of hardware
correctness proving for asynchronous circuits. Some attempts have
been made to develop automated theorem provers [S.3, S.4, ¥.4],
but the use of ‘these theorem provers 1is only feasible when
extremely high reliability is required such as in life support
systems or flight control computers [W.4]. The process of
correctness proving 1is extremely tedious, and is not often
employed by practical designers.

The problem of reducing metastable failure probability is an
ongoing research problem. The use of metastable detectors needs
further research-in order to establish reliable operation under
all conceivable electrical conditions, such as capacitive loading.
Other means, such as the detection of timing conditions on the

inputs and extending settling the time, may yield improvements.

- A.1 —

APPENDIX A

PROOF AND COMMENTS ON THEOREM 3.1

The proof and discussion of Theorem 3.1 are based on the following
theory from [M.4]: (The reader is encouraged to review the mathematical

introduction in Section 3.4.1 before tackling the formal theory below.)

Theorem 1 If L is stable for input range C and u € Uc'

then A(L,u) is an open set.

Proof Since L 1is stable for €, there exists r > 0 such that
Sr(L) C A(L,C). Suppose p € A(L,u). Then there exists ¢t € R+, such
that ¢(p,u,t)€ L. By continuity of ¢, there exists & > O such that
lp - q|l < &= |e(p.u.t) - ¢(q.u.t)| < r. Hence, o(g,u,t) € A(L,C) and
so there exists s > 0, such that go(cp(q,fn,t)ﬁt,s) € L. Hence,

¢(g,u,t+s) € L and so g € A(L.w). 7

Theorem 2 RID{LO.LI,E) is non empty. Furthermore, if
p € RID(LO,LI,E), then ¢(p,u,t) € A(Ly.C) U A(L,.C) for any

+
t €R .

Proof By Theorem 1, A(LO,II) and A[Ll.ﬁ) are open subsets of 3.
Since L, and L, are disjoint, A(LO,I_L) and A(Ll,L—L) are disjoint as
well. Since . X 1is connected, it cannot be the union of two non empty
disjoint open sets. Hence, RID(LO,LI,E) is non empty.

Now, - suppose tp(p,ﬁ,t)e A(Li,C) for some 7p € Z, t € R+, and

i=0 or 1. Then, since u, € Uc' there exists s € RT, such that

cp(tp(p,ﬁ.t),l_it,s) € Li' Hence, ¢(p.u,t + s) € Li and so p € RID(LO.LT,L:).

- A2 -

The following lemma 1is useful in establishing that any state
trajectory that comnects A(Lo,a) and A(Ll,a) must intersect

RID(L Ll,ﬁ) for any u € u..

D:

Lemmg Suppose X 1is a connected metric space, Y 1is a metric
space, G is a subset of Y, and f:X »Y is a continuous
function, such that F(X) N int(G) # ¢ and fF(X) N int(G') # ¢.

Then, F(X) N bnd(G) # O.

Proof Suppose f(X) N bnd(G) = . It will be shown that this leads to
a contradiction. For any metric space Y, Y = int(G) U int(G') U bnd(G) .
Since Ff(X) N bnd(G) = ¢, F(X) C int(G) U int(G'). Since the interior of
a set is open, both int(G) and int(G') are open, and by hypothesis, each
of these has a non empty intersection with f(X). Hence, Ff(X) 1is not
connected. But, since f(X) 1is the continuous image of a comnected set,
f(X) is connected, a contradiction. Hence, f(X) N bnd(G) # ¢. 7
Theorem 3.1 Suppose u € U, and p € A(L, u). Let I'CU be
a connected set of input functions, u:Rf - I, with the
following properties:

~

. + -
There exists t, € R, u,, uy, € I' such that

g 1w Xg
(i)_ ¢(p. uy. ty) € AL, 1)
(11) o(p. u,, t;) € AL, u)
(iii) for all ue€r, u =u
5

Also::suppose ¢ is continuous with respect to u on I, then,
there exists u € I' such that ¢(p. u*, tl) € RID(LO, Ll’ u).
Furthermore, for any T > 0, there exists e > 0 such that for

0<tLgT

¥
W™= u] <e = (p. u, T t) € LOU L1

= A3 =

Proof Consider the function f: I' » 3 defined by f(u) g o(p. u, tl),
By the hypotheses of the theorem f 1is continuous and f(alj € A(Lo, u);
and f(az) ¢ A[LO, ﬁ). It is now possible to apply the lemma above.
Applying this lemma with X =T, Y=3 and G= A(LO. u),
there exist u €T such that f{u*) = ¢(p, u*, tl} € bnd(A(LO, u)).

Since A(LD, u) and A(L ﬁ) are both open (see Theorem 1), then

1
bnd(A(L,. u)) N A(L,. u) = ¢ and bnd(A(L . u) = ¢. Thus,
bnd(A(L_, 4)) CRID(L_, L . 1), giving ¢(p. u, t;) € RID(L_. 1.).
The remainder of the proof follows the last part of the proof of
theorem 4 in [M.4] and is given here for completeness. It relies on

Theorem 2 above.

For i =0 or 1 there exists ri > 0 such that

¢f¢(p. u, to), u, T] e U s (&)
! £el., Ty #

Since ¢ 1is centinuous with respect to initial state there exists 5i >0

such that

ly - ¢(p. v, el <6, 3 el WT) - é(s(p. U,). W T <r,

And since ¢ 1is continuous with respect to u, there exists &; > 0

such that
*® #
u-u J_(e; = le(p, u, tl) - ¢(p. u , tl)l < 51
Combining these gives

lu -« < e; 3 ¢(p. u, t; +t) €L, forany t e [0T].

- A4 -

Letting e = mln{&o,&l)

[u - u*|_< e = ¢(p, u, £+ t) € L0 UL, for t € [0,T]

1

b

Comments on Theorem 3.1

Theorem 4 in [M.&]‘is a special case of Theorem 3.1, where the set
of input function with bounded first derivatives replaces the connected
set of input functiomns. However, condition (i) is added in Theorem 3.1,
With justification below:

Marino employs the set of input motions

U(b, e, t,. 1) 4 {u: R™SI|u is differentiable on R’ with |u(t)|<b for

all teR', u_ =1, and u(0) = e}
1

In Marino’s _ proof of Theorem 4 [M.4], he asserts that
Uc N U(b, e, tl, ﬁ) & ¢. This statement is not always true when C is
not path connected. For example, if C = [0,1] U [2,3], e =0, u(t) =3

for all t€R', t; =1 and b=10, u€U_ for all u € U(b, e, €5 0.

This follows because since u is differentiable it must be continuous and
u(0) =0 and wu(l) =3 implies there exists t such that u(t) € C.
Moreover, Marino then goes on to deduce from

Uc NUb, e, t., u) # @ that there exists u € U(b, e, ty u) such that

1
¢(p. u, tl) € LO C A(LU, u). This is invalid because U(b, e, t

not include u, and, further t; may not be large enough so that

1,—u) may
o(p, u, tl) €.L0.

Thus, the statement "¢(p, u, tl) € A(Lo} u) for some
u € U(b, e, t u)" needs to be included as a hypothesis in Marino's

theorem. The significance of the theorem is not altered by this change,

only the rigour restored.

- B.1 -

APPENDIX B

DERIVATION OF EQUATION (5.9)

Equation’ (5.9) follows from (5.8). In order to evaluate the first

probability term in (5.8) consider

b h requests first during the | at least one requester
pro time interval [0,T] requests during [0,T]
T
5 h requests during [(a-1)At, aAt]
_ prok and no other requests during [0, aAt]
5 prob(at least one requester requests during [0,T])
[T J
At k -A aht A At
= lim z e B h
At=0 1 B, b
a=] LB 1-T[e B
g=1
Tk
- = hgt
ne 817 at
N 0
k
_gi}\gTT
1 -e
= < (B.1)
A
=12
Note that (B.1) is independent of T, thus (B.1) applies as T

approaches infinity. The remaining terms of (5.8) follow from observing

-A D
that e 2 - is the probability that requester h makes no reguest

during Dq.

-C.1-

APPENDIX C

Derivation of Equation (5.11)

The first probability in (5.10) on the R.H.S. is found by observing:

prob[requesters € i request in Bn—l S{n~1) = 3]
[requesters € i request in B -1
= prob n S(n-1) = j
| and at least one of which before Dy |
[requesters € i request during
+ prob S{n-1) = j (C.1)
D3 of Bn—l
where
Beqg =Dy) t,(8) + D
£€i
: Bn—l corresponds to the time duration of the (nnl)th batch, if and only if

at least one request occurs before D3. Rearranging (C.1) and using (5.5).

gives

requesters € i request in Bn—l and

S(n-1) = }

prob
at least one of which before D3

- T [1 - Q(j.h)e

h€i

(C.2)

'7‘hD3] T

hei

atamfr -«)

Equation (5.11) now follows from (C.2) and applying (5.5).

- D.1 -

APPENDIX D

PROOFS OF THEOREMS 5.1 AND 5.2

Theorem 5.1 The probability transition matrix of the fixed
priority batch arbiter model, P, has a unique positive limiting
probability vector independent of the initial probability vector,

provided uh'kh >0 for h=1, .., k and D1 + D3 > 0.

Proof As mentioned in ‘conjunction with (5.17) and Figure 5.6, the proof
of Theorem 5.1 reduces to choosing an intermediate state w such that

piwpwj > 0. Consider three cases for D1 + I)3 > 0O:

Case 1: D1 > 0, D3 >0
Equations (5.6), (5.7). (5.9) and (5.11) imply that pxy >0 for all
states X an&#-y except x =y = 0. Choose w =1, arbitrarily, which

gives Pilplj >0 for.all i,j=0, ..., m-1. So by (5.17) P2 > 0.

Case 2: D1 =0, D3 >0 |
pxy >0 for all states x and y with the following exceptions:
(i) Xx =y = 0.
(ii) The state x contains only one requester, h, say and the
lowest priority requester in y is also h.

Exceptien (ii) follows because h has no time in which to request
at the end §f éhe batch with state y, since Dl = 0 and no other request
is pending (since the following batch, x, contains only L) hence D3
does not occur. Exceptions (i) and (ii) are the only transitions with

zero probability. This can be established by considering the following

classes of transitions:

- D.2 -
(a) x#0 and y = 0. See Figure D.1

D D t
_ |3’2=SI"

0
z zero batch | batch with state x

FIGURE D.1 Zero to Non Zero Batch Transition.

Since D3 > 0, any requester way request after the first request during

the zero batch. Thus, 1IN >0 for all x # 0.

(b) x#Z0 and y £ 0

t (h D D t
™) D5 |

0 T | | l
State ¥y l State x

FIGURE D.2 WNon Zero to Non Zero Batch Transition with D1 = 0.

In Figure D.2, h is shown as the last requester in state y. Any
requester, other than h, has time to request before the end of state y.
Thus, state i can be any state made up of requesters other than h. If
state x contains a requester besides h, ¢ say, then it is possible
for h to request in order to be in state x because D3 occurs due to
2 requesting before the end of ts(h). Thus, transitions from y to X
have non zero probabilities when h 1is not in x, or when h 1is in x

and there is at least one other requester in x.

(¢) x=0 y#0
All transitions from y to the zero state have non zero probabilities

because it is possible for every requester not to request during a non

zero batch.

- D.3 -

Now that it has been established which transitions have non zero
probabilities, the intermediate state w can be chosen as follows: For
i not a singleton state choose w =m-1 (i.e. the full batch). For i
a singleton state, choose w = m-i (the full batch without the singleton
requester). It follows from the above that piwpwj > 0 and hence from

(5.17) P% > 0.

Case 3 Dl > 0 and D3 =0

Since D1 is present at the end of all non zero batches, pxy >0 for
all x and y # 0. However, for y =0, x must be a singleton state in
order that p&y > 0. This is because the probability of at least two
requesters requesting at exactly the same time is zero. Hence, there is g
unique first request to terminate a zero batch and, thus, X cannot
contain more than one requester.

Now it is shown that there exists a state w such that piwpwj > 0:

Choose w =1 (singleton batch with requester 1) then 20 for

Pi1P1j
all i,j and hence from (5.17) P2 > 0.

This completes all possible cases of D1 + D3 > 0. Since P is
irreducible and primitive, the Markov chain is acyclic. Theorem 5.1 now
follows from the Ergodic Theorem for homogeneous Markov chains [G.1,
p. 95]:

In a homogeneous Markov chain limiting absolute
probabilities exists for arbitrary initial probabilities

and are independent of them if and only if the chain is

acyclic.

- D.4 -

Theorem 5.2 The probability transition matrix P1 as defined in
(5.18) has a unique positive limiting probability vector
independent of the initial probability vector provided Hy s >0
fjol‘ h=1, .., k and D1=D3=0.

Proof The proof technique is the same as the Theorem 5.1 proof. There

are two cases:

Case 1: k > 2

It will be shown that P? >0

m-2
o3 - 2

1j iw “wj
w=0
m-2 m-2
= E E pizpzwpwj
w=0 z=0
> piupuxpxj 0€u, x {m2 (D.1)

Hence from (D.1) it is sufficient to find states u and x so that

piupuxpxj > 0. Firstly, the transitions which have zero probability for

D1 = D3 = 0 are examined:

pxy is zero only in the following cases :

(i) vy =0 and x is not a singleton state.

(ii) x contains the lowest priority requester in y.

- .5 -

Case (i) follows from the argument used in Case 3 of Theorem 1. Case (ii)
follows from the fact that with D1 = D3 = 0 there is zero time available
at the end of 2 batch for the lowest priority requester of the batch to
make a request:before the next batch.

The states u and x, illustrated in Figure D.3, are now chosen

to avoid zero probability transitions.

th
n

(n—3)th batch (n—2)th batch (n—l)th batch batch
pxj pux iu

State j [———| State x | ———3| Stateu | ————| State i

FIGURE D.3 State Tramnsitions in Proof.

Since state 1 cannot contain all requesters, there is a requester, £,
say which is absent from i. Let u be the singleton state containing
€. If j =0 then let x be the singleton state containing a requester
different fro&v.ﬂ. If j#0 and g is the lowest priority requester in
3 then choose Xx to be the singleton state containing a requester

different from g and £ (k > 2). With this choice (see Figure D.4) it

can be seen that p. p_Pp > 0.

Iuux xj
P, b Pp.
o i xJ | ¢ ux P iu ..
State j State x State u State i
b =L £ not in i
g f#g

FIGURE D.4 Non Zero Batch Transitions of Proof.

- D.6 -

Case 2: Lk =2

It will be shown that P2 > 0. For P

2,
1 1°

m—2
(2) _ E
pij - piupuj
u=0
> piwpwj 0<w{m2 (D.2)
(n-2)"® batch ! (-1 bateh 5 5 B aken
State j ¥l ;| Statew —2* | State i

FIGURE D.5 State Transitions Illustrating Proof.

Referring to Figure D.5, since k = 2, w can only be chosen from 3
states (0O, 1 or 2). If w is chosen to be a state different from both i
and j then piwpwj > 0 as then none of the zero probability transitions
discussed in Case 1 can occur. Hence P? >0 from (D.2).

The remainder of the proof is the same as the proof of Theorem 5.1.

Sanesn,
b

R

wena

_E_l_

APPENDIX E

DERIVATION OF THE CONDITIONAL MEAN WAITING TIME FOR THE

FIXED PRIORITY BATCHED ARBITER MODEL

In order to evaluate the waiting time W(i,j,h) of (5.46), it is
necessary to define a conditional mean waiting time, cmwt(j.h).
state j state i
D t (. t_(h t (. i t (. D D
| 2 s L s | 50D | 50D By | 3
1 T | 1 I | T !
’ ‘ 1 t '
W
CASE (i) h € j
state j state i
‘ 5 & P} t(-) e ()t () D Dy ’
21 s L] I [| I
i I 1 i | | 1
| : |
W
CASE (ii) h € j
. FIGURE E.1 Illustration of Definition t,-
Firstly, tw is defined, as shown in Figure E.1, by
r -
D1+§ts(g) L hey
g€j
g>h
¢ S o
W
! D1 + D2 + E ts(g) , héi (E.1)

g7

= Eud =

Now the conditional mean waiting time, cmwt(j.h)., is defined as the mean

time from requester h | requesting to the end of E given that

requester h Trequests during twl The time duration tw is divided into

two times: ti; the "idle™ duration when Req h = 0; and t_ . the "request”

duration when Req h = 1, as shown in Figure E.2. That is

Y i by (E.2)

h requests

FIGURE E.2 Subdivision of tw.

It follows that

fw(tw) r fr|w(tr’tw) dtr dtw (E-3)

where fr is the density function of t ; fr]w is the conditional density

function of {T given tw’ and fw is the density function of tw‘ let

filw be the condition density function of ti given tw and, then from

(E.2) and the exponential re-request time distribution

-E.3 -

e_kh(tw_tr)
, 0<t <t
At e W
= x Log *V (E.4)
L O « T 2t ort_ <0
T W T
Substituting (E.4) in (E.3) and integrating gives
<«
Cw 1
cmwt(j,h) = fw(tw) _hhtw - hh dtw (E.5)
0 1-e

For later use, the conditional request time, crt(tw.h) is defined by

o«
crt(tw.h) = J‘ t. fr|w(tr'tw) dtr
0

= L2 - (E.6)

and represents the mean time requester h has a request pending given that

requester h requests during tw'

Examples
1. For constant service times, tw is constant and

cmwt(j,h) = crt(tw,h) [E-T)
2. For exponentially service times, fw is the density function of a

- E. 4 -

2. For exponentially service times, fw is the density function of a
sum of exponential random variables and a constant. If all mean

. 1 ; :
service times are equal to o fw is given by

ur(t—D}r_1 e_ T , t>D
{r-1)!
£,08) = (E.8)
0 , t <D
where
D . h€j
- { 1
D1 + PQ , hé€j
T = E 1
g€j
g>h

Equation (E.5) can be evaluated using series expansions to give

@ —nth © —nth
pdw e B0 B e y e
cmwt(j,h) = Ah + . z hh =7+ D 2 T (E.9)
n=0 [1+n ——J n=0 [1+n ——]

It can be shown by applying standard convergent tests that (E.9) is
convergent for 1t >0, p >0, D>0 and Ah 2 0. For increasing r,
(E.9) tends to crt(D + 53 h), due to fw approaching a delta function
centred on the mean D + 52 In general, this is true for any service time

distribution as can be seen from applying the central limit theorem of

statistics.
In order that (E.5) can be applied to find Widi.3.b), it 1is

necessary to find the conditional probability, P . that requester h

o BE
requests before D3 (i.e. during

tw), given that state i follows
state j. :)

p, = préﬁ[h requests before D3 | $(n) = i, S(n-1) = j]

prob[h requests before D3 and S(n) =i | S(n-1) = j]

prob[S(n) = i | S(n-1) = j]

1 . D3 A
=5 - [1-0G.m)] - T |1 -Q@.r)e TT Q(j.r)e
ij TEL r€i
T#h

Then

Wi, J.dt) = pa{cmwt(j,h) + D3} + (1 - pa) crt(DB,h) + M{d,)} (E-11)

where crt(DB,h) is defined in (E.6) and

M(i.n) Ao, 4 z—i— . j#0 (E.12)
g€i g
g<h
Note that M(i,h)

is the waiting after state

J
is actually serviced in state

up until requester

h
i, as shown in Figure E.3.

state 1 .

5 service h
| | |

i T]

- |]
I . |
m I(

M(i, h)

FIGURE E.3 Definition of M(i, h)

- E.6 -

Equation (E.11) holds only for j # 0. When j =0, it follows from

Appendix B that

- T T Ay
W(i.0,h) = —=—— + crt(DB,h) - (1 -) + M(i,h) (E.13)
PR PR
g : g
gEi g€i
Ah
where is the probability h requests first during an idle period, as
A
)%
g€i

derived in Appendix B.-

The expressions abpve for the mean waiting time have been realised
in a PASCAL program and tested against Monte-Carlo simulations. Agreement
within statistical variation has been consistently obtained over a wide

range of parameters Dl’ DZ' DB' A, 1 and requester h.

= F.1 =

APPENDIX F

PROOFS OF CONVERGENCE OF EQUATIONS (5.56), (5.61) and (5.66)

This appendix provides justification for the limits obtained for
light and heavy loading performance of the arbiter in equations (5.56),

(5.66) and (5.66). Firstly it is shown that:

: o A
lim p(n) = lim i 2 p(n) when all hh >0 (F.1)
n—x%0 —300

From Theorems 5.1 and 5.2, the limit lim p(n) =p of (F.1) exists, and
n—

50-
For all e > 0 there exists an integer NO >0

such that n > NO = lip(n) - pll < e (F.2)

It will be shown that for all e' > O there exists an integer N1 such
n-1
1 ;
that N> N, 3 [&) p(m) -p [<e'

n=0

Consider the definition

K 2 max {ll p(n) - p I} (F.3)
all n
K is well defined, since let e=11p(0) -pl in (F.2), then
K= max {ll p(n) -p II} since Ipn) -pll <l p(0O) —-p I for
n=1..N
0]
n>N

0

- F.2 -

Given an e' >0, Nl is chosen as folllows: Putting e = 5 In

] & [

(F.2), there exists NO such that n > NO > pn) —p ll < 5

Now _

N-1
[I% z p(n)} - P

n=0

NO N-1
T [Epcn)}—mou)p 5 [Epcn)}—(N—No—l)p

g
n=0 n=N6+1
N, N-1
SN EORES I NN EOREY
n=0 n=N6+1
< N0;1 K + N_Ngkl g— (F.4)
The L.H.S. of (F.4) is < e' when
N > [Né + 1] [E—K - 1] (F.5)

so choose

N o= [+ D - 17+ 1

where [x] 1is the greatest integer less than x. Hence [F.1] has been

established.

~ B3 =

N-1 N-1
Proof of lim lim é— 2 p(n) = lim lim %— E p(n) (F.8)
A=0 Neee N- A=0
- n=0 n=
. N-1
To establish (F.6) it -suffices to show that lim %— 2 p(n)
N—xo
n=0
converges uniformly in A.
It will be shown that there exists a 5 >0 such that

N=1 :
lim %— E p(n) converges uniformly for 0 ¢ A < 6. That is, it will be
N2
n=0

shown that for all e > O there exists an integer N2 > 0 independent of

A such that

N=1
9 ;7 Ep(n) -plj e (F.7)

n=0

This then allows the order of the limits in (F.6) to be swapped [R.4

p.668].
Consider the eigenvalues of P é lim P, where P is given in
0 0
A0
(56.25). The eigenvalues of P are denoted by el{k), eg(h). ces em(k).
The characteristic equation of PO is
[)% = B (F.8)

Hence the eigenvalues of PO are given by

=]

el(O) = I 32(0) = =1, ei(O) =0 1i=3, 4, (F.9)

For A > 0, P is irreducible and primitive and hence, since 'P 1is also

-F.4-

stochastic, column sums equal one, it has one eigenvalue of 1 and all
others have modulus less than 1. (See Frobenius theorem [G.1, p.53].
noting that eigenvectors corresponding to eigenvalues different from 1
have a zero coordinate .sum, hence cannot correspond to the maximal
eigenvalue. Thus 1 is the maximal eigenvalue.)

The eigenvalues of P are continuous functions of the elements of
the matrix and the elements of the matrix are continuous functions of X\

for A 2 0. Hence there exists a & > 0 such that for 0 < A < § (using

(F.9))

e (A) = 1

Re[ez(x)] (-2 . ley) | <1 (since unique max =1)
and

e, M 1 <5 for i=3.2 ...m (F.10)

Note that e is distinct from the other eigenvalues. Consider now the

2 .
o N=1
eigenvalues, fi(R). of %— 2 p"
n=0
N=1
1 n .
HeSIEE) e, M” i=1,2 ...m
n=0
L e,
= 'N- W ,ei(?\) Z 1 (i.E. i # 1) (Fll)
i

Thus from (F.10) and (F.11) with 0 < A < &

2,00 =1

- F.5 -

1+ e [N
] < & L =
i 2 N_l = Re(ei) 4
) 1+ [e.(?\)IN
1 i 4
f.(0)] ¢ = = ,i=3,4, ..., F.12
el v o v noE

There exists an invertible matrix Q for each A such that
..._1 X
P=QJQ (F.13)

where J is the Jordan canonical form for P.

[1
]
ey (M)
J = Jl (F.14)
4 .
Je
where Jl’ J{7 are Jordan blocks of the following form:
e
1 e v
Ji =) £) where e € {ea(h), eQ(R). e d s em(h)}
2 -1 e

e (F.15)
Note that, since ez(k) is distinct from the others, its block is 1 x 1,

similarly with el(h) = 1. Now

- F.6 -

1
eB(n) 0
- n s
= vy
- 0] ' mn
Iy
where
e:{l 0
'n‘en-l en
hld =
A . 0
] n-2 n EBn—l
2])° 1
n . - e
Ji = N
s [m]em
L. =1
n e0=1 . .
by
0 . n
- e -
n| n-1
0 [1]5-
where

Using p(n) = P"p(0)

(F.16)

(F.17)

= B.f =

N-1
“ Q[%— E JHJQ—IP(O) from (F.13) (F.18)
n=0

Consider the elements of

[1
0]
fz(h)
N-1 N-1
1 n 1 n
ﬁ'E J° = N E Jl (F.19)
n=0 n=0
. N-1
0
-1 n
N E g
n=0
N-1
A typical element of %— E J? in (F.19) looks like
n=0
N-1
1 n| n
ﬁ%‘z [j]e - (F.20)
n=
but
N-1 N-1 # © n
n{ n n n 1
e T E B e
n=j n=j n=]j

The series is absolutely convergent since the limit of the ratio of

consecutive terms is-less than one:

(F.22)

Thus for every element, hij' in (F.19), except 1, there exists Bij 2 0

- F.8 -

such that
] Bi'
| P55 | €% S
Let bl, b2. e bIrl be the normalised basis vectors (i.e. Il bi N=1
for i=1, ..., m) of the basis for J in (F.14) (i.e. the columns of
Q). then for- each A there is a unique set of coordinates
oy Ony «oe, O such that
1 m
p(0) = a, b1 + ay b2 + ...+ o bm (F.24)
From (F.18)
q(N) = ay b1 + fg(h} a, b2 + K3 b3 + ...+ Km bm (F.25)
where
m
K. = E B, 2
1 1J 3
j=1
Now
m
o = ey by | < | £ || e By |+) | Ky]I by
i=3
<) el (F.26)
i=1
(N.B. I bi =1, §=1 ..y 1)
where Bi is made up of finite sums of Bij' and hence is finite and

independent o%i A.
Equation (F.26) shows that ¢q(N) converges to a; b;, as No-oo
Since the cooredinates al, ey am are continuous functions A (since

Q is a continuous function of A) and Qgs een A are bounded at

= F:8 ~

A=0 and A = 6, then they are bounded for 0O ¢ A < &. Hence, there
exists a B' < ® independent of A so that (F.26) becomes

EORCEN A 5 (F.27)

Hence, gq(N) 1is uniformly convergent for A in the open interval (0,6)],
since for every e > 0 there exists N2 = [g—] + 1 which is independent
of A, such that

N>N, = ||q(N)—a1b1“<r;
Equation (6.30) is now proved. It is sufficient to show

lim p = lim lim p(n) = lim lim p(n) (F.28)
A0 A0 D=0 n—° A-x

It will be shown that there exists a T > 0 such that lim p(n) is
Ca Ao

uniformly convergent for A > T.
The eigenvalues, el(h) =1, ez(h). eB(K), cees em(k) of P
continuously approach the eigenvalues of P_(+.,0) and Pw(X,+)1 which are

the same for both matrices and denoted by
el(m) =1, ez(m) = 0, ea(m) =0, ..., em(w) =0 (F.29)

Hence, by continuity with respect to A, there exists T > 0 such that

A>T gives -

1See equation (5.31) for an explanation of this notation

- F.10 -

81(7\) =1

[%Q)[<% i=2 8 ... (F.30)

The elements of Jn now have a typical non zero element
n| n 1 -
[.]e e | < 5 (F.31)

Thus, using a similar argument that was used to establish (F.26), for some

Bi& > 0 independent of A

) [B—Jf[il}vl (F.32)
=1

Lot -y < §

i
Now
Eﬂ {n since j<m
thus
m w M
i3 &
””p(“) “ o By ” < § o ! % l (F.33)
. 2
i=2
] a, | are bounded as A = ® ‘since Qe --ew @ are bounded for P
and bounded for P with A=T, and al, Ce e am are continuous
functions of A as discussed above. Hence EIRREE am are bounded for

A>T and

" m
B'"'n

211

H p(n) - a; b, “ < (F.34)

for some B" > O independent of A. Hence uniform convergence has been

established.

- F.11 -

EWJFE:
" m
B 2 -0 as n-—ow
2
since
{ B"!n+l[m] " m
n+l
lim 2 = lim L = é—]
n—° - m n—®
B"(n

Equation (5.66) is justified by showing

N-1 N-1
i . 1) -
lim lim N 2 p(n) = lim lim N E p(n) (F.35)

A=o N—o N—xo A2
n=0 n=|

To establish (F.35) it is shown there exists a T >0 such that
N-1

q(N) é %— z P(n) is uniformly convergent for A > T. The proof is
n=0

similar to that used for (F.6), hence only a sketch of the proof is given.

Since D1 + D3 =0, P (0.0) =1im P is used. From the matrix
Ao

formed from (5.36), (5.37) and (5.38) and by expanding the determinant
along the top row

det(P_(0,0) - eI) = (e2-1)(=e)™ 2 (F.36)

Equation (F.36) gives the eigenvalues, denoted ml(WJ, ez(m}, % § comm em(m),

of P_(0,0)

- F.12 -

n
—

e, (=)

82(“’) = ~1

Il
o
=)
i
W
N
3

e4() (F.37)

By continuity of the eigenvalues with respect to A, there exists T > 0O

such that A > T gives

el(k) = 1
Re[ez(?\)] <-% e | <1
| ei(h) | < %— i=3, 4, , m (F.38)

Using the same argument as above, it follows that

m

o0 —ay oy [< 5= 1a | (F.39)
i=2

Again | @, | are bounded for A > T. Thus

ROEERN RS (F-40)

for some B > 0 independent of A.

Equation (F.40) establishes uniform convergence.

- G.1 -

APPENDIX G

PROOF OF THEOREMS 6.1 AND 6.2

Theorem 6.1 The probability transition matrix, P, of the fixed
priority arbiter model has a unique positive limiting probability
vector independent of the initial probability vector provided

hh’ ph 20, for h=1l, .., k and D1+ D2 > 0.

Proof: It is sufficient to show P is irreducible and primitive b
Y

establishing that there exists an r > 0 such that
P’ >0 (6.1
To prove (G.1) it suffices to find a sequence of r transitions from

state j to state i, for all states i and j. (In this appendix

"transition” is to be interpreted as a non zero probability transition

unless stated otherwise). Two cases are considered: (1) D1 >0
(2) D2 > 0.
(1) IJ1 >0 :
idle any state
] D]_ tS | D2
| I 1 |
T 1

any requests

FIGURE G.1 Zero to Non Zero Transition

- G.2 -

Dl > 0 allows transitions from the idle state to any other state as shown

in Figure G.1. In particular, if D2 =0 a transition to the full state
can only occur from the idle state. It follows that a lower bound on r

in order that (G.1) holds when D1 >0 and D, =0 is k+l (determined

by observing that the full state as starting and {finishing states requires
the idle state as one of the intermediate states). Exactly k+1
transitions are constructed between any two states i and j by

considering two sub-cases: (l.a) i non zero, (1.b) i =zero.

th
n state I

(n+k)th state (n+k+1)th state
idle i
p 1
I])] | T

FIGURE G.2 k+1 State Transisitons j to i #0, D, > 0.

(1.8) 3% Q

It suffices to find k transitions from state j to the idle state, as
shown in Figure G.2. After |[j| -1 ({ k ~ 1) transitions where no new
requests are lodged, a singleton state is reached (except when j = 0 in
which case let any single request occur). The remaining trénsitions
before the idle state of Figure G.2 (k - |j| + 1 of them for j # C. or
k-1 for j=0) can be constructed by a sequence of singleton states
alternating between {1} and {2}, say, (starting with a different state

to the previous singleton state) as shown in Figure G.3.

(n+k)th state

singleton # {1} [{1} l {2} | {1} | o [{1} or {2} ' idle
I T 1 T I T | T] 1 I
1 2 i 2

FIGURE G.3 Padding with Singleton States up to the (n+k)th State.

= Ged =

(1.b) i=0

- : t
The same transitions up to the singleton (n+k-1) h state are employed as
above. A singleton state is generated for the (n+k)th state by an
appropriate request and then no requests occur resulting in the (n+k+1)th

state being idle as required.

(2) Dy >0

Two subcases are again considered : (2.a) i 0, (2.b) i = 0.

(2.a) i#£0

k transitions from any state j to i # Q0 are constructed as follows
(see Figure G.4): Requésts are withheld until the state (labelled the
{n+£)th state) is a subset of i (if j =0, then hp(i) requests).
This takes at most k-1 transitions (i.e. & { k-1). The requests not
already pending in state i are lodged during the (n+£)th state along
with a request from the requester serviced. Requester hp(i) then keeps
requesting in___AD2 of successive states to maintain a sequence of states

equal to i until the (n+k)th state.

n® State (n+£}t? state . (n+k)t? state
I J . _—_l ci ! l i f ’ L i l
| | | | | | |
«—— no requests — TTT1 T 1

hp(i) hp(i)
FIGUEE G.4 Transitions to State i, D9 > 0.

(2.b) i=0

The proof is the same as (1.b) above. 77

- G.4 -

Theorem 6.2 For D1 + D 0. the probability matrix Pl' has

2:

a unique positive limiting probability vector independent of the

initial probability vector, provided M kh >0 for
h=1, .., k.
Proof: The same approach as in the previous proof is adopted, except now
the full state is not included. A total of k+ 2 transitions are

constructed between any two non full states.

Firstly, k-1 transitions to the idle state are constructed.

’nth state (n+|j]—1)th state

j#0O ’ singleton

I ! 7 l

é&—————— no requests ———

j =0 singleton

I | !
T

request

. nth state (n+1)th state
) |

FIGURE G.5 Transitions to Singleton State, Dl = D2 = 0.

As shown in Figure G.5, |i] =1 transitions can be comstructed to a
singleton state when j#0.. It remains to add (N.B. |j] < k-1)
transitions to reach the idle state in a tﬁtal of k-1 transitions.
Transitions between singleton states can be arranged as shown in

Figure G.6.

- G.5 -

{g} (n+k—1)th state

!{g}!{h}!{g}! . !or o | idle]l
T T T
h g h
h#g

FIGURE G.6 Padding up to the (n+k—1)th state with

Singleton States, D1 + D2 = 0.

After the singleton state an extra three transitions are constructed as

shown in Figure G.7. The state {hp(full \ i)} 1is a singleton state

which allows the final transition to i (even when i =0). %

(n+k—1)th state (n+k)th state (n+k+1)th state (n+k-i~2)th state

singleton idle {hp(full\i)} i
T T 111
request requests

FIGURE G.7 Remaining Three Transitions, D1 + D2 = 0.

- H.1 -

APPENDIX H

DERIVATION OF THE CONDITIONAL MEAN WAITING TIME

FOR THE FIXED PRIORITY ARBITER MODEL

The derivation of MWT(h) started in Section 6.5.2 is completed in
this appendix by deriving an expression. for, cmwtf(j,h), the conditional

mean waiting time of requester h given that requester h is serviced in

state j.

(n—e)th state (nml)th state nth state

' ;
i o ; service h
| T ; | ; |
w1 w2
request h
FIGURE H.1 Conditional Waiting Time.

The conditional waiting time is decomposed into two components, twl and
to as shown in Figure H.1. The mean of L denoted cmwtfl(i,h) is

the mean time between request h and the end of the (n—ﬂ]th state i
(defined as the last state before J such h € state) given that
request h occurs during this state ia The mean of th. denoted
cmwtfz(j.h,B}' is the mean time duration of the (£-1) states from the
th th ; g : .
(n-8+1) " state to the n state, given that requester h is serviced in
the nﬁh state j (and, consequently, no state can occur during tw

2
without request h pending). It follows that

- H.2 -

co

request h lodged | h serviced
cmwtf(j.h) = E cmwtf2(j.h,€) prob
: th . th
o1 in (n-£) state | in n " state = j
m:i ; i
_ request h lodged in| h serviced
+ 2 cmwtfl1(i,h) prob h ' - e '
10 (n-€) " state = i in n™ state = j

(H.1)

Expressions for quantities in (H.1) are derived in turn. Three cases of
i need to be considered in order to evaluate cawtfl(i,h) : (a) i = 0;

(b) h =hp(i) and (c) h € i # O:

a) i =0
D.A A
cnwft1(0,h) = > p LR 4 et 1, el
vO 2 A 1 E A
B v such that 28 g
hev gEV gEv
(H.2a)
where crt(Dl.h) is defined in (E.6).
(b) b = hp(i)
cmwtfl(i,h) = crt(Dg,h} (H.2b)

{c) h € 1 0

Let g = hp(i), then it follows from (E.3) that

TG
o0
cwtfl(i,h} = J‘ f (t) ert(t, h) dt
D. &
b
. 1 .
crt(D2 + —) , constant service
J pg times
(E.9) with D = D2, r =1 , exponential service
L L=0L times
g
(H.2¢c)

The quantity cmwtf2(j,h.,2) can be expressed as
emwt£2(3.h,2) = (8-1)(D, + 5) (H.3)

when Be = for all f. A more general expression than (H.3) is given

in (H.12) below.

Define
A reduest h lodged in | h serviced
q(€.h,i) = prob h . e g
(n-2) " state = i in n™ state = j
where h € i\ {hp(i)} (H.4)
and ") A [qij] 4 prob[vth state = i | (v+1)th state = j}] (H.5)

Q 1is the reverse probability transition matrix and can be evaluated as

follows :ZLEt A be the event "vth state = i" and B be the event

"(v+1)th state = j", then

prob(A|B) A prob(ANB)

prob(B)

_ prob(BJA) - prob(A)
A prob(B)

(H.6)

- H.4 =

Since MWI(h) is taken under limiting steady conditions (i.e. v-=) (H.6)

gives:

(H.7)

The probability q(£.h,i) of (H.4) can be evaluated inductively on & as
follows. Let q(£.h) be the state wvector [q(E.h.i)]T (where

q(l.h,i) =0 when h € i \ {hp(i)})

then
q(l.h) =HQ j (H.8)
where H = [hij]
0 i#3j
and hij =90 i=3 , he€ei\ {hp(i)}
1 i=3 . hei\ {hp(i)}
q(2,h) =HQHQ j (H.9)
where H= [hij]
_ 0 L #]
where hi' =
J 1~h,, ,1i=]j
ii
and in general
=H@BH o - (H.10)

a(e.h)

- H.5 -

Now

request h lodged | request h serviced

prob :
in (n—ﬂ)th state | in nth state
: =, 8-1 "
=1H (Q H) Q] : (H.11)
T

where L =T1, 1; «uy 1]

The above waiting time expressions have been implemented in a PASCAL
program and agree with Monte-Carlo simulations over a wide range of the

parameters Dl' D2, A, ¢ and regquester h.

The more general expression than (H.3) with differing p's for

cmwtf2 promised, can now be stated :

e-1 Q)]
onwtf2(3.h,8) =) (D +) (I.12)
o1 1 (E Q) j

= I.1 =

APPENDIX I

JUSTIFICATION OF EQUATIONS (6.23), (6.28) AND (6.34)

After studying Appéndix F, one can determine whether the same
uniform convergence results apply to other matrices by examining their
eigenvalues. Not surprisingly, it turns out that the problem is almost
identical to that of the batched model.

In order to establish equation (6.23), the limiting probability
transition matrix as request rates tend to zero, PO’ can be taken from

(6.7):

N
N
N
N
N

AR
NN
NN
RN
N

H
o
o
o
\\Q\ AN
N\
AR
X
S

N

i

-
o
o
(@]
Y
R N §‘\‘ y
N
"

R
N

(I.1)

where the states in the matrix PO are conveniently reordered so that the
group of states i, with |i| =0 is followed by |i| = 1, li] = 2 ..
li| = k.

The characteristic equation, det(PO -vI) =0 is

V-1V =0 (I1.2)

- 1.2 -

and so the eigenvalues are
v=+1, -1, 0, .., 0 (1.3)

which are identical to those in (F.9) and so (6.23) can be deduced in the
same fashion.
Equation (6.28) follows from determining the eigenvalues of P_(+.0)

vhich is 1lim P when DI > 0, D2 =0, and P_(0,0) which is lim P

A= A0

when D1 = D2 = 0. From (6.13) it follows that

Pu(+.0) = (I.4)
0 1 Ol full \ {k-1)

don’t carell 0] 1| full \ {k}
0 0 O)¢— full

don’t care

where the same state ordering is employed as in (I.1) and "don't care"
boxes contain O's and 1’s, and O's are everywhere else not specified. The

eigenvalues of (I.4) are now easily obtained as
ve=l, =1, 0, 6, ou; O (I.5)

P_(0,0) has the same set of eigenvalues as P (+.0) as can be seen by .
following the same process. Again, tﬁe same eigenvalues of (I.5) are
treated in Appendix F (F.37) in the heavy loading limit case.

Equationi (6.34) follows from determining the eigenvalues of

P (+.+), which is iim P when Dl >0 and D2 >0, and P_(0,+),
—00

which is lim P when D1 = 0, D2 > 0. The matrix Pw{+.+) can be
A=

— T3 -

obtained from equation (6.12):

o .. 0
N 0 0
Bfed) = | .« (I.6)
0 0
L 1
The matrix P_(+,+) and P_(0,+) have eigenvalues 1, 0, 0, ..,0 and

(F.29) applies from Appendix F.

o

APPENDIX J

THE EFFECT OF NON IDEALISED TIMING MODELLING

IN CLOCKED BATCHED ARBITERS

In the ideal modelling assumptions for «clocked arbiters in
Chapter 7, effects such as clock skew, non zero rise and fall times and
non zero propagation delays were ignored. This aided in simplifying the
analysis of timing and the clarity of notation. This appendix points out
which assumptions are needed only for notation elegance and clarity, and
those timing assumptions-which cannot be easily dispensed with.

The inclusion of constant delays, independent of component or module
(as opposed to differential delays between components of the same type),
can be included in the definitions of D2 ; ta(h) and D1 without
great difficulty. . However, the values obtained will be dependent on the
batch composition in the case of D2 and ta(h) as follows: D2
includes a full clock period plus the ﬁropagation delay of FF3 and 2m gate
delays for the daisy chain to propagate to module m. That is D2 is now
a function of the first request serviced in a batch. Similarly, values of
té{h) must account for delays in the daisy chain. The exact details
depend on the resetting strategy. The timing of the dropping of the last
Ack at the end of a batch will be delayed by a constant reset delay,
dependent on resetting strategy, plus a gate delay. This reduces D1
which is the time available for the last requester serviced in a batch to
request befonq the end of batch point.

From exﬁerience with the asynchronous model in Chapter 5, the
behaviour of arbiter is most sensitive to D, and relatively insensitive

1

to small changes in D2 and ta(h). The effect of increasing D2 and

ta(h) is roughly equivalent to increasing the request loading on the

= Joi@ =

arbiter, since more contention occurs due to less available servicing
time. Variations in Dl,_however, most critically affect the allocation
of the resource to the two lowest priority requesters under heavy request
loading conditions because their probability of receiving service in the
batch following a service is dependent on the available time in ﬁhich to
service before the end of batch. By reducing Dl' as is the case when non
zero delays are introduced, the two lowest priority requesters are more
disadvantaged. This can be easily modelled by appropriately adjusting the
value of D1 in the transition probabilities to account for the delay
incurred in resetting after a request drops. In summary, constant delays
can be modelled by modifying the definitions of D1 ; D2 and ta(h)
slightly. The added complication in the model would only result in
significant differences over the idealised model when delays are
significant compared with the clock period.

The inclusion of differential delays between components of the same
type would involve considerably more complexity, but could be
incorporated. - The benefits obtained from this complexity are of
questionable value since the size of differential delays is expected to be
smaller than the mean delay for a component.

Accounting for clock skew in the modelling causes problems because
an absolute fixed time frame is assumed to exist in all modules. If clock
skew were significant, timing diagrams would be needed for each module and
no unique "end of batch” point would exist. In fact, the timing of the
arbiter may break down altogether, since the design of a synchronous
circuit depends on the clock to strictly séquence events within the
circuit. Although the model could not easily account for clock skew, it
is apparent that the circuit design itself relies on clock skew being

small anyway and so the assumption is not unreasonable in the model

itself.

-K.1-

APPENDIX K

DERIVATION OF TRANSITION PROBABILITIES FOR THE NO RESETTING

CLOCKED BATCHED ARBITER OF CHAPTER 7

The acknowledge time for requester h ,ta{h), has a discrete
distribution which is dependent on whether h is serviced first in a
batch. Suppose ts(h) has a probability density function fh then

define the discrete probability functions f;(m) and fz*(m+%j as

follows
f*h(m) é prob [ta(h) = mTCIh not serviced first in batch]

1
(m—35)T,
= £, (t)dt (B.1)
3
(m=3)T,
(N.B. fh(t)zo for t < 0)

fz*(m+%ﬂ = prob [ta(h) = (m+%JTCIh serviced first in batch]
mT
: (¢
= J‘ fh(t)dt (B.2)

{m—l)Tc

- K.2 -

The probability of request h not having

a request pending at the

end of a non zero batch with state i is denoted Q(i.h) and is given by

Q(i,h) =

<

[ee]
e h.l ' T E f;(m)e
éei

o>h ™=l

) [ro]
2 *
f e
L2

—Rh(D1+D
e

m=1

X 2 f;*{m) e i

m=1

where g is the requester serviced

The transition probabilities now follow:-

prob [S(n)=i | S(n-1)=j]

0
AT “Ach
T (1= BT e
_g€i fEi
k —khT
1 -T7
h=1
k
TT Q(i.n)

TT (1 -Q(i.n)) TT Qi.h)
he€i hei

-A, mT
h™e et

A, mT
i (B.3)

-A (m+%ﬂTc

. he€i

first in batch 1.

,i=j=0

,1#0, j=0

(B.4)
,i=0, jx0

]]-_;lfo’ J#O

[1]

[2]

[3]

[4]

[5]

L6]

[7]

[&]

_R_l.._.

AUTHOR'S PUBLICATIONS

"Canrvredundancy and masking improve the performance of
synchronisers?”, "IEEE Trans. on Computers, Vol. C-35, No. 7T,
pp. 643-646, July 1986, also Tech. Report EES440, Dept. Elec. &
Computer Engg.,University of Newcastle, N.S.W., Australia, August
19584

"Metastable behaviour and digital systems reliability" to appear
IEEE Design and Test also Tech. Report EE8441, Dept. Elec. &
Computer Engg., University of Newcastle, N.S.W., Australia,
September 1984.

"On the unavoidability of metastable behaviour in digital
systems”, to appear IEEE Trans. on Computers, also Tech. Report
EES516, Dept. Elec. & Computer Engg.,University of Newcastle,
N.S.W., Australia, December 1984. '

"The modelling and performance analysis of batching arbiters",
Performance 86 and ACM Sigmetrics 1986 Conference on Computer
Performance Modelling, Measurement and Evaluation, North Carolina

State University, May, 1986.

"Performance of Arbitration Disciplines"”, 2nd Australian Computer

Engineering Conference, Sydney, 1986.

"A class of arbiters — structures and performance analysis",
Tech. Report EE8421, Dept. Elec. & Computer Engg., University of
Newcastle, N.S.W., Australia, June 1984.

"Decentralised asynchronous batching arbiter timing analysis and
proof”, Tech. Report EE8531, Dept. Elec. & Computer Engg.,
University of Newcastle, N.S.W., Australia, July 1985.

"Decentralised clocked batching arbiter — modelling and
metastable failure modes”, Tech. Report EE8532, Dept. of
Electrical. & Computer Engg., University of Rewcastle, N.S.W.,

Australia, August 1885,

[A.

[B.

[B.

[B.

[B.

[B.

[B.

[C.

LG,

[E.

1]

1]

2]

3]

4]

5]

6]

1]

2]

3]

- R.2 -

REFERENCES

Adamsf;R.L., Castaldo, D.R. and Kurtz, G.W., "Real-time detection
of latch resolution using threshold means”, (US patent
3,515,998), June 1970.

Bain Jr., W.L. and Ahuja, S.R., "Performance analysis of digital
buses for multiprocessing", Proc. 8th Int. Symp. Computer Arch.,

Minneapolis, Minn., May 1981.
Barros, J.C. and Johson, B.W., "Equivalence of the arbiter, the
synchronizer, the latch, and the inertial delay"”, IEEE Trans.

Computer, Vol. C-32, pp. 603-614, July 1983.

Bell, C. et all., Computer Engineering — A DEC View of Hardware

Systems Design, Digital Press, pp. 280-285, 1578.

Best, D. and Watson, W., "Distributed priority access to a
computer unit”, (US patent.3,573,856), April 1971.

Bonkright, W. et al., "The Illiac IV System”, Proc. IEEE, No.60,
pp. 369-388, 1972.

Bowen, B.A. and Burh, R.J.A., The logical desipn of

mul ti-microprocessor systems, Prentice-Hall, Ch.4, 1980.

Calvo, J., Acha, J.I. and Valencia, M., "Asynchronous modular
arbiter", IEEE Trans. on Computers, Vol. C-35, pp. 67-70, January
1986.

Cantoni, A., "A technique for interrupt distribution in a
mul tiprocessing system”", Software & Microsystems, Vol.1l, No.6,

pp. 153-159, October 1982.

Caprani, O., Jensen, K.H. and Ougaard, U., "Microprocesser
connected to =a common memory", Euromicro 77 Symposium

Proceedings, North Holland Pub. Co., pp. 175-181, 1977.

[C.

[C.

ie¥

[C.

[c.

[c.

[C.

i,

[c.

[

4]

5]

6]

7]

10]

11]

12]

137

= R.3 =

Catt, I., "Time loss through gating of asynchronous logic signal
pulses", IEEE Trans. Electronic Computers, Vol. EC-15,
pp. 108-111, February 1S66.

Cioffi, G. and Velardi, P., "A fully distributed arbiter for
multiprocessor systems"”, Multiprdcessing and Microprogramming

No.11. pp. 15-22, 1983.

Chaney, T.J., "Comments on ‘A note.on synchrdnizer and interlock
maloperation’ ", IEEE Trans. on Computers, Vol.C-28, pp. 802-804,
October 1979.

Chaney, T.J., "Measured flip—-flop Tresponses to marginal
triggering”, IEEE Trans.on Computers, Vol.C-32, pp. 1207-12009,
December 1983

Chaney, T.J. and Molnar, C.E., "Anomalous behavior of
synchronizer and arbiter circuits", IEEE Trans. on Computers,

Vol.C-22, pp. 421-422, April 1973.

Chaney T.J., Ornstein, S.M. and Littlefield W.M., "Beware of the
syncﬁfbhizer", COMPCON '72, Jack Tar Hotel, San Francisco, CA,
pp. 317-319, September 1972.

Cojan, A., Pregernig, L, Tark, J.C. and Downing. R., "The fastbus
cable segment”, IEEE Trans. DNuclear Science, Vol.N5-31, No.l,

February 1584.

Conte, G. and Corso, D., (editors), Multi-microprocessor systems

for real-time applications, D. Reidel Publishing Co., Dordrecht,

Holland, 1985.

Corsini, P., "n-user asynchronous arbiter”, Electronic

Letters, Vol.II, pp. 1-2., Oth January 1975.

Corsini, P., "Speed independent asynchronous arbiter”, Computers

and Digital Technigues, Vol.2, pp. 221-222, October 157S.

[c.

[c.

[C.

[C.

[D.

[D.

[E.

[E.

[F.

[F.

[F.

14]

157

167

17]

2]

2]

1]

2]

3]

=~ R4 ~

Cortes, M. and McCluskey E.J., "Modelling power supply
disturbances in digital circuits", ISSCC’86.

Cortes, M., McCluskey, E.J., Wagner, K.D. and Lu, D.J.,
"Properties of transient errors due to power supply

disturbances™, ISCAS’'86.

Couranz, G.R. and Wann, D.F., "Theoretical and experimental
behavior of synchronizers operating in the metastable region”,
IEEE Trans. on Comput., Vol.C-24, pp. 604-616, June 1975.

Courvoisier, M., "A component for multimicroprocessor structures:
A programmable arbiter", Proc. Fall Compcon’'79, IEEE 1979,
pp- 307-311.

Davies, D. and Wakerly, J.F, "Synchronization and matching in
redundant systems", IEEE Trans. on Computers, Vol.C-27,
pp. 531-539, June 1978.

Digital Equipment Corporation Special Systems, PCLII - An option
description, Document No.YC-COOOC, November 1976.

Elineau, G. and Wiesbeck, W., "A new J-K flip-flop for
synchronizers", IEEE Trans. on Computers, Vol.C-26,
pp- 1277-1278, December, 1977. '

Enslow, P.H., "Multiprocessor organisation — a survey”, ACHM Comp
Surveys, 1977, 9 (1).

Farber, G., 'A decentralised fair bus arbiter”, Multiprocessing

and Microprogramming, Vol.7, No.1l, 1981.

Fleischhammer, W. and Dortock D., ' "The anomalous behavior of
flip—flops in synchronizer circuits"”, IEEE Trans. on Computers,
Vol.C-28, pp. 273-276, March 197S.

Fletcher, W.I., An FEngineering Approach to 'Dipital Design,
Englewood Cliffs, N.J., Prentice-Hall, p. 484, 1980.

[F.4]

[G.1]

[G.2]

[G.3]

[G.4]

[G.5]

[H.1]

[H.2]

[H.3]

[H.4]

[1.1]

- R.5 -

Freeman, G.G., Liu, D.L., Wooley, B. and McCluskey, E.J., "Two

CMOS metastable sensors", CRC Tech. Report No. 84-4, Dept. Elect.

Engg. and Computef Science, Stanford University, CA., May 1986.

Gantmacher, F.R., Matrix Theory, Vol.II, N.Y. Chelsea Publishing

"Co., 1974.

Giffin, W.C., Queueing, Basic Theory and Applications, Grid Inc.,
Columbus, Ohio, 1978, ISBN 0.88244-133-7.

Glasser, L.A. and Dopperpuhl, D.W., The Desien and Analyvsis of
VLST Circuits, Addison-Wesley, pp. 360-365, 1085.

Grasso, P.A., -~ Dillon, T.S. . and Forward, K.E., "Memory
interference in multi-microprocessor systems with a time-shared

bus", IEE Proc., Vol.131, Pt.E, March 1984.

Gustavson, D,B and Theus, J., "Wired-or logic on transmission
lines", IEEE Micro, pp. 51-55, June 1983.

Hanson, P.B., Operating System Principles, Prentice-Hall,
Englewood Cliffs, N.J., 1973.

Hoener, S. and Roehder, W., "Efficiency of a multiprocessor
system with time shared ©busses", Euromicro 77 Symposium
Proceedings, North Holland Pub. Co., pp. 35-42.

Hohl, J.H., Larsen, W.R. and Schooley, L.C., "Prediction of error
probabilities for integrated digital synchronizers™, IEEE Journ.
Solid-state Circuits, Vol.SC-19, pp. 236-244, April 1984.

Hurtado, M. and Elliott, D.L., ™Ambiguous behavior of logic
bistable systems", in Proc. 13th Annu.-Allerton Conf. Circuit and
Syst.‘Theory. October 1975.

Intel, Microsystems Components Handbook, Vol.I, Appendix B,
p. 3-315, 1984.

[I.

[1.

[J.

[K.

[K.

[K.

[K.

[K.

[K.

[K.

2]

3]

1]

5]

6]

7]

- R.6 -
Intel Application Notes AP51, 8289, Bus Arbiter, 1985.

Intel, Component_ Data Catalog, 8259 Programmable Interrupt
Controller, pp. 6.116-6.133, 1980.

Jaiswal, N.K., Priority Queues, Academic Press, New York and

London, 1968 (Vol.50 in series Mathematics in Science and

Engineering).

Kameyama, M. and Higuichi, T., "Design of dependent—failure
tolerant microcomputer system using triple-modular redundancy",

IEEE Trans. on Computers, Vol.C-29, pp. 202-206, February 1980.

Katsuk, B., et-al., "PLURIBUS - An operational fault-tolerant
multiprocessor", Proc. IEEE, October 1878.

Kinniment, D.J. and Woods, J.V., "Synchronisation and arbitration
circuits in digital systems", Proc. IEE, Vol. 123, Pt E, pp.
961-966, October 1976.

Kleeman, L. and Cantoni, A., "A class of arbiters - structures
and performance analysis”, Tech. Report EES421, Dept. Elec. &
Computer Engg., University of Newcastle, N.S.W., Australia,
June 1984.

Kleeman, L. and Cantoni, A., "Can redundancy and masking improve
the performance of synchronisers?", to appear 1986 IEEE Trans. on
Computers, also Tech. Report EE8440, Dept. Elec. & Computer
Engg. ,University of Newcastle, N.S.W., Australia, August 1984

Kleeman, L. and Cantoni, A., "Metastable behaviour and digital
systems reliability“ to appear IEEE Design and Test also
Tech’- Report EES8441, Dept. Elec. & Computer Engg., University of
Newcastle, N.S.W., Australia, September 1984.

Kleeman, L. and Cantoni, A., "On the unavoidability of metastable
behaviour -in digital systems”, to appear IEEE Trans. on
Computers, also Tech. Report EES516, Dept. Elec. & Computer

Engg.,University of Newcastle, N.S5.¥W., Australiz, December 1984.

[K.

[K.

[K.

K.

[K.

[K.

[K.

[L.

[L.

[L.

10]

11]

12]

13]

14]

- R.T -

Kleeman, L. and Cantoni, A., "Decentralised asynchronous batching
arbiter timing analysis and proof”, Tech. Report EES8531, Dept.
Elec. & Computer Engg., University of Newcastle, N.S.W.,
Austrélia, July 1985.

Kleeman, L. and Cantoni, A., "Decentralised clocked batching
arbiter — modelling and metastable failure modes", Tech. Report
EES532, Dept. of Electrical. & Computer Engg., University of
Newcastle, N.S.W., Australia, August 1985.

Kleeman, L. and Cantoni, A., "The modelling and performance
analysis of batching arbiters”, Performance 86 and ACHM Sigmetrics
1986 Conference on Computer Performance Modelling, Measurement

and Evaluation, North Carolina State University, May, 1985.
Kleeman, L. and Cantoni, A., "Performance of Arbitration
Disciplines™, accepted 2nd Australian Computer Engineering

Conference, Sydney, 1886.

Kleinrock, L. Queueing Systems. Vol.1l, John Wiley, 1976.

Kovaiégki, A.B., "High-speed bus arbiter for multiprocesssors”,
IEE Proc., Vol.130, Pt E, No. 2, pp. 49-56, March 1983.

Kriz, J.. "A queueing analysis of symmetric mul tiprocesser with
shared memory and buses”, IEE Proc., Vol.130, Pt.E, No.3,
pp. 83-89 May 1983.

lacroix, G., Marchegay, P. and Piel.-G., "Comments on ‘The
anomalous behavior of flip~flops in synchronizer circuits'", IEEE

Trans. on Computers, Vel.C-31, pp. 77-78, January 1982.

Lamdah, T., "Asynchronous timing in logic systems”, Digital
Processes, 2(1976), pp. 157-162.

laws, D.A. and Alfke, P., Bipolar Microorocesor Logic and
Inteface Data Book, pp. 8.4 to 8.7,1983.

[L.4]

[L-5]

[M.1]

[M.2]

[M.3]

[M.4]

[M.5]

[M.6]

[M.7]

[M.8]

- R.8 -

Lent, B., "A variable priority arbiter for resource allocation in
asynchronous multiprocessor systems", Multiprocessing and
Microprogramming,-No.Q, Pp. 295-307, 1982.

Lim, %. and Cox, J.R. Jr., "Clocks and the performance of
synchronizers", Proc. IEE, Vol.130, pp. 57-64, March 1983.

Manner, R., "The POLYBUS i A flexible and fault tolerant
multiprocessor interconnection", Interfaces in Computing, No.2,

pp. 45-68, 1954.

Manner. R., "Hardware task/processor scheduling in a
polyprocessor environment”™, IEEE Trans. on Computers, Vol.C-33,
pp. 626-636, July 1984.

Marino, L.R., "The effect of asynchronous inputs on sequential
network reliability"”, IEEE Trans. on Computers, Vol.C-26,
pp. 1082-1090, November 1977.

Marino, L.R., "General theory of‘ metastable operation”, IEEE
Trans. on Computers, Vol.C-30, pp. 107-115, February 1981.

Marsan, M. Ajmone and Gregoretti, F., "Memory Interference models
for a multi-microprocessor system with a shared bus and a single
external common memory"”, Multiprocessing and MNicroprogramming,

No.7, pp. 124-133, 1981.

McConnel, S.R. and Siewiorek, D.P., "Sychronization and voting",
IEEE Trans. on Computers, Vol.C-30, pp. 161-164, February 1981.

Mead, C. and Conway, L., Introduction to VLSI Systems, Reading,
MA, Addison-Wesley, Chapter 7, 1980.

Moore: W.R. and Haynes, N.A., "A review of synchronisation and
matching in fault tolerant systems™, IEE Proc., Pt E, Vol.131,
pp. 199-124, July 1984.

[M.

[P.

[P.
[P.
[P.
[R.

[R.

[R.
[R.

[s.

[S.

o]

1]

2]

3]

4]

2]

3]

4]

1]

3]

— R o~

11

Muhlemann, K, "Arbiters

priority access

'glitch® problem™, Microprocessors and
EUROMICRO North Holland Publishing Company, pp. 391-401, 1979.

Pearcé, R.C., Fielel, J.A. and Little,

arbiter model", IEEE
September 1975.

Trans. on Computers,

conflicts

and the

their Applications,

W.D., "Asynchronous
pp. 931-932,

Peatman, J.B., Digital Hardware Desiegm, McGraw-Hill International

Book Co., Chapter 5, 1980.

Pechoucek, M., "Anomalous response times of input synchronizers"”,

IEEE Trans. on Computers, Vol.C-25, pp. 133-139, February 1976.

Plummer, W.W., "Asynchronous arbiters”, IEEE Trans.on Computers,

Vol.C-21, No.1l, January 1972.

Reese, E.A., et al., "A 4Kx8 dynamic RAM with self refresh", IEEE

Journ. Solid State Circuits, Vol.SC-16, No.5, October 1981.

Rosenberger, F. and Chaney, T.J.,

circuit”, IEEE Journ.

pp. 731-738, August 1982.

Rusell, R.M., "The CRAY-I computer system",

pp. 63-72, January 1978.

Solid State

Circuits,

i

"Flip~flop resolving time test

Yol.SC-17,

Communications ACH,

Rektorys, K., Survev of Applicable Mathematics, Cambridge,
Massachusetts, The M.I.T. Press, 1969.
Sharma, D.K. and Ahuja, S.R., "A first-come-first-serve bus

allocation scheme using

ticket assignments",

Techiical Journal, V.60, No.7, Septembér 1981.

Bell System

Shostack, R.E., Schwartz, R. and Melliar-Smith, P.M., "STP: A

mechanized logic for specification and verification”,

Proc. 6th

Conf. on Automaoted Deduction, Lecture Notes in Computer Science,

138, D.W. Loveland, Ed.,
1982.

Springer Verlag,

New York,

pp. 32-405,

X

(8.

[s.

[S.

[S.

[T.

[T.

[T.

[T

[U.

[V.

[W.

4]

5]

6]

1]

2]

4]

1]

1]

1]

- R.10 -

Shostak, R.E., "Deciding combinations of theories", Journal ACH,
Vol.31, pp. 1-12, January 1984.

Simmoéé, G.F., Introduction to Topology and Modern Analvysis,

New stk, McGraw—-Hill, 1963.

Stoll, P.A., "How to avoid synchronizer problems”, VSLI Design,
pp. 56-59, November 1982.

Stuck, M.J. and Cox, J.R. Jr., "Synchronization strategies",
Proc. Caltech Conf. on VLSI, pp. 375-393, January 1979.

Taub, D.M., "Arbitration and control acquisition in the proposed

IEEE 896 futurebus", IEEE Micro, pp. 28-41, August 1984.

Theus, J., Taub, M. and Ballakrishnan, R.V., "Futurebus
anticipates coming needs"”, Electronics, pp. 108-112, July 1984.

Thurber, K.J. et al., "A systematical approach to the design of
digital bussing structures’, AFIPS Conference Proc., Full Joint

Conference, 1972, 41 part II.

Tyner, P., 1iAPx432 General Data Processar Architecture Reference

Manual, Intel Corp., January 1981.

Unger, S.H., "Asynchronous ' sequential switching circuits with
unrestricted input changes", IEEE Trans. on Computers, Vol.C-20,
pp. 1437-1444, December 1971.

Veendrick, H.J.M., "The behavior of flip-flops wused as
synchronizers and prediction of their failure rate", IEEE J.
Solid State Circuits, Vol.LSC-15, pp. 168—176, April 1980.

Wakerly, J.F., "Transient failure in triple modular redundancy
systems with sequential modules™, IEEE Trans. on Computers,

Vol.C-24, pp. 570-573, May 1975.

[W.2]

[W.3]

[W.4]

[W.5]

- R.11 -

Wakerly, J.F., “Microcomputer reliability improvement using
triple modular redundancy™, Proc. IEEE, Vol.64, pp. 889-895,
January 1976.

Wakerly, J.F., "The Intel MCS-48 microcomputer family: a
critique"”, IEEE Computer, pp. 22-31, February 1979.

Wensley, J.H., et al, "SIFT: Design and analysis of a fault
tolerant computer for aircraft control", Proc. IEEE, Vol.66,
pp. 1240-1255, October 1978.

Wulf, W.A. and Bell, C.G., "C.mmp - A multi-miniprocessor"”, Proc.
AFIPS Fall Joint Computer Conference, N.J.., 1972.

