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Abstract 
 

This paper presents a low cost novel odometry design capable of achieving high accuracy dead-
reckoning. It also develops a statistical error model for estimating position and orientation 
errors of a mobile robot using odometry. Previous work on propagating odometry error 
covariance relies on incrementally updating the covariance matrix in small time steps. The 
approach taken here sums the noise theoretically over the entire path length to produce simple 
closed form expressions, allowing efficient covariance matrix updating after the completion of 
path segments. Closed form error covariance matrix is developed for a general circular arc and 
two special cases : (I) straight line and (II) turning about the centre of axle of the robot. Other 
paths can be composed of short segments of constant curvature arcs without great loss of 
accuracy. The model assumes that wheel distance measurement errors are exclusively random 
zero mean white noise. Systematic errors due to wheel radius and wheel base measurement were 
first calibrated with UMBmark [BorFen94]. Experimental results show that, despite its low cost, 
our system’s performance, with regard to dead-reckoning accuracy, is comparable to some of 
the best, award-winning vehicles around. The statistical error model, on the other hand, needs 
to be improved in light of new insights. 

1  Introduction 
 

One of the major tasks of autonomous robotics navigation is localisation. In a 
typical indoor environment with a flat floorplan, localisation becomes a matter of 
determining the Cartesian coordinates (x,y) and the orientation θ, collectively known 
as the state, of the robot on a two dimensional floorplan. For a typical two wheel 
robot, odometry (also known as dead-reckoning) remains to be one of the most 
important means of achieving this task. Odometry is the measurement of wheel 
rotation as a function of time. If the two wheels of the robot are joined to a common 
axle, the position and orientation of the centre of the axle relative to the previous 
position and orientation can be determined from odometry measurements on both 
wheels. In practice, optical encoders that are mounted onto both drive wheels feed 
discretised wheel increment information to the central processor, which in turn 
continually updates the robot’s state using geometric equations. However, with time, 
odometric localisation accumulates errors in an unbounded fashion due to wheel 
slippage, floor roughness and discretised sampling of wheel increments. A lot of 
research works have been undergone at both the hardware and theoretical level to 
improve the reliability of odometry. 
 

At the hardware level, [BarDur95] determine the position of their robot based 
on inertial navigation with gyroscopes and/or accelerometers, but this method has 
been proven to be susceptible to drift. The remainder of this paragraph showcases the 
dead-reckoning implementations of a few robot vehicles from the University of 
Michigan: Cybermotion K2A utilises synchro-drive, which makes it insensitive to 
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non-systematic errors. CLAPPER, consisted of two TRC LabMates connected by a 
compliant linkage, uses two rotary encoders to measure the rotation of the labmates 
relative to the compliant linkage, and a linear encoder to measure the relative distance 
between their centrepoints, giving it the unique ability to measure and correct non-
systematic dead-reckoning errors during motion. In the attempt to improve the dead-
reckoning performance of a tracked vehicle called Andros, a two-wheeled encoder 
trailer is attached to the back of the vehicle, which is able to freely rotate on the 
horizontal plane. The rotations of the trailer wheels and the trailer with respect to 
Andros are measured with the attached optical encoders. More details about these 
robots can be found in [BorFen94]. To the best of the authors’ knowledge, the robot 
used in the experiment has a unique, lowest cost mechanical design which differs 
from all the existing ones while still achieve comparable accuracy. 
 

Work done at the theoretical level normally involves error quantification via 
modelling, so that some kind of mathematical treatment would be possible. For 
instance, many robust stochastic based techniques such as the Extended Kalman Filter 
(EKF) require that the odometry errors be statistically quantified in the form of an 
error covariance matrix, so that it can be combined with the information provided by 
the external reference to produce a linear minimum mean square estimate of the 
position. Therefore, high level methods also sometimes imply the utilisation of 
additional external referencing of position.  
 

Normally, odometry errors can be classified as being systematic or non-
systematic, and it is a common engineering practice to first identify the sources of 
systematic errors and have them calibrated prior to using the system. In the work by 
Borenstein and Feng [BorFen94], a calibration technique called UMBmark test has 
been developed to calibrate out the systematic errors suffered by a typical two wheel 
robot. The dominant systematic error sources are identified as being the difference in 
wheel diameter and the uncertainty about the effective wheel base. The experiment 
designed requires that robot be moved around a square path in both the clockwise 
(CW) and counterclockwise (CCW) senses several times. The average Cartesian 
offsets, known as the centres of gravity, from the initial positions are assumed to be a 
sum (superposition) of the errors contributed by both systematic error sources. The 
error model parameters are then solved and incorporated into the software as tuning 
factors. In our work, this method has been used to calibrate the robot. 
 

To be able to propagate the error covariance matrix of the robot’s state 
following a change of stage is the main focus of this chapter. A commonly used 
method [Durra93, Jenki93] is now presented. Supposed the at stage k-1, the state of 
the robot is [ ]Sk k k k

Tx y− − − −=1 1 1 1θ

]k k
Tθ

, which comprises its two dimensional Cartesian 
coordinates (xk-1, yk-1) and orientation θk-1 with respect to a global reference frame. It 
then performs a rotation αk followed by a translation Dk to move to a new state 

. Applying simple geometry, [Sk kx y=

 
X
Y

X
Y

D
X
Y

D
D

k

k

k

k

k

k

k

k

k

k

k

k k k

k k k

kθ θ
α

θ

θ α
θ α
α

















=










































=
















+
+
+

















−

−

−

−

−

−

−

−f
1

1

1

1

1

1

1

1,
cos( )
sin( )  (1) 

 

 2



Accurate Odometry and Error Modelling for a Mobile Robot, MECSE-1996-6 

To propagate the error covariance matrix associated with the state matrix to the 
next stage, the error incurred is assumed to be small so that first order Taylor’s 
expansion in the form of Jacobian matrix does not introduce significant higher order 
errors. Given the error covariance matrix of Sk-1 and the input vector 

, and given the intuition that the error in stage k-1 is not correlated 
with the error introduced by the input, the covariance matrix of the next stage, k, can 
be evaluated as follows,  

[uk k k
TD= α ]
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In the authors’ opinion, the major problem with this treatment is that there is no 
physical basis in assuming that the translation error is uncorrelated with the rotation 
error [Durra93, CheCro92, LuMil95, Nishi95]. Model parameters do not give physical 
insight into the characteristics of the system.   
 

The model is also inconsistent. For the same path, if propagation of error is 
done in multiple parts, the model yields different solution. To illustrate, suppose that 

and Cov(S[Sk
T

− =1 0 0 0]

]
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Even by setting Cov(uk0)=2⋅Cov(uk1), the two cases yield different final state 

error covariance, even though they lead to the same final state by following exactly 
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the same path. The authors consider this model as inadequate. [CheCro92] have tried 
to resolve this problem by performing error propagation for every time increment on 
the wheel encoders. This approach is conceptually similar to numerical integration but 
suffers high computational cost. The physical reasoning which leads to the error 
model is also questionable.  

 
The theoretical work by [Wang88] has introduced a more realistic, physically-

based error model for an arbitrary circular arc motion. Furthermore, Wang has 
attempted to circumvent the inadequacy of first order approximation by rigorously 
evaluating the error covariance of the new state by integrating certain parts 
constituting the state change expressions. The result is a model which is very accurate 
for large wheel turn variance, but limited in its applicability to a range of rotation 
angle. For large rotation angle, the robot path has to be divided into small segments in 
which the total turning angle is within the limitation of the model. 
 

Other methods of representing position error includes the ‘circular-error 
probable’ (CPE) by [Leenh85] which defines a confidence circle about the estimated 
vehicle’s position, and the vehicle has a 0.5 probability of being inside the circle. This 
representation is questionable because it is well known that the position error is 
usually not equal in all directions. [Krant96] has proposed the use of equal-error 
probability isoline for a similar purpose, and has outlined some ways of growing the 
isoline as the vehicle moves. It remains uncertain whether any existing robust 
mathematical techniques could be adapted to these novel representations, and if none 
could, whether new and sound methods could be developed to make use of them.  
 

The new non-systematic error model developed by the authors has a strong 
physical basis which is closely related to the design of the robot. The model also 
generates error representation in the form of a error covariance matrix, which is the 
standard operating block for a multitude of robust noise filtering tools. Unlike the 
model illustrated earlier, the new model is consistent in a multiple path segments 
scenario. The computational load in incrementally updating the covariance matrix in 
small time steps, as done in [CheCro92] has been lifted because simple close form 
formulae have been derived for three simple path types: (I) circular arc motion (II) 
straight line (III) rotation about the centre of the axle. Complex paths can be divided 
into sections which can be approximated by the aforementioned cases, hence the 
model can be applied on a section by section basis. Unlike the model by [Wang88], it 
is valid for arbitrary distance and rotation angle. Even though the model by [Wang88] 
is more accurate when the errors are large, compared to the first order accuracy of the 
new model, in the authors’ opinion, should the robot be operating in conditions likely 
to incur large errors, an accurate representation of these large errors is insufficient. 
Instead, extra measures should be adopted to correct for such errors when they arise, 
such as employing external referencing. 

The remainder of this chapter is organised into six sections: Section 2 
summarises the principles the authors adhere to in dealing with error modelling. 
Section 3 presents the novel odometry system, and states, with justification, the key 
assumptions being incorporated into the model. Section 4 describes the UMBmark 
test used for reducing systematic errors and lists the key equations used. This is 
followed by section 5 on the derivation of the proposed non-systematic error model 
and highlights of its features. The details and results of  calibration of systematic 
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errors and validation of the proposed error model constitute section 6. Lastly, section 
7 is the conclusion which points out some inadequacy of the model and suggests 
possible future work for addressing these issues. 

2  Principles of Error Modelling - A Summary 
 

In our works, error modelling has been carried out based on following steps: 
 

Error Classification The uncertainties in data are contributed by many error 
sources. Error classification allows certain errors to be eliminated, and strategies to be 
developed to decouple the actual errors of interest from the errors introduced by the 
measuring devices. In practice, errors are grouped into two major categories: 
 
• Systematic Errors : are errors that recur during every run of experiment. It is 

possible to calibrate systematic errors prior to tackling random errors. In our work, 
systematic errors are assumed to be predominantly caused by unequal diameters on 
both wheel, inaccurate estimation of effective wheel base [BorFen94], and, as the 
external referencing tool, the offsets of the sonar sensor from the midpoint of 
wheel axle and forward orientation of the robot. 

  
• Non-systematic Errors : refer to the random errors and are often characterised by 

their mean vectors and error covariance matrices. In most cases, the mean vector is 
zero after calibration and therefore often ignored. In the context of our work, non-
systematic errors are assumed to be primarily caused by wheel slippage and 
backlash, non-continuous sampling of wheel increments, the noise associated with 
sensor reading caused by the fluctuation of speed of sound and imperfections in 
reference targets [KleKuc93], and, discretisation of the pan encoder measuring the 
pan motor to 0.18° per step. 

 
Error Modelling Once the error types and sources are identified, model can be 

developed to describe the interaction between the system’s dynamic and the error 
sources. In the context of our work, this means 
 
• Parameterisation of Errors : determination of how the errors are best quantified. 

For systematic errors, the parameterisation usually takes the form of a 
multiplicative constant to the nominal value. In our work, the real wheel base is 
regarded as proportional to the nominal wheel base, and the diameters of both 
wheel sustain a constant ratio [BorFen94]. For non-systematic errors, error 
covariance matrices are the preferred form of representation. 

  
• Process Modelling : determination of mathematical expressions which describe 

the dynamic behaviour of a system. These expressions decide how the error 
parameters are incorporated into the state of the system after a state transition. For 
systematic errors, the expressions translate the modelling parameters into 
measurable experimental data after a change of state, so they can be estimated and 
imbued into the software as ‘tuning factors’. For non-systematic errors, the 
expressions generate the error covariance matrices for the final state by 
incorporating the statistical nature (once again parameterised) of the change into 
the initial state. 
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3  Robot Design and Assumptions 
 
The robot used in the experiment has two pairs of wheels : the actual drive wheels, 
and the encoder wheels that generate odometry measurements. The encoder wheels 
are as sharp-edged as practically possible to reduce the wheel base (B) uncertainty, 
and are unloaded because they are independently mounted on linear bearings which 
allow vertical motion, hence the problem of wheel distortion is minimised. In the 
authors’ belief, this design greatly improves the reliability of odometry measurements 
since wheel slippage and load deformation are no longer significant. 
 

Based on the design, the following assumptions are made before proceeding to 
the next stage of model development. 
 

It is reasonable to assume that for a short unit of travel, the error incurred on 
both wheels are uncorrelated. because the two drive wheels are driven by two 
different motors, and two separate optical shaft encoders are used to gather odometry 
information. This assumption is adopted by [BorFen94, Kleem95]. 
 

       
castor

drive wheel

encoder wheel

B

castor

x

y

+

motor

optical shaft
encoder  

Figure 1 : Left : Sonar sensing robot with accurate odometry system. Right : Design of precise 
odometry system 

 
Our work takes the assumption one step further. For a short unit of travel, the 

error is assumed to be zero mean, and white, that is, uncorrelated with the previous or 
next unit of travel. The variance of the cumulative error is then the sum of the 
variance of each statistically independent unit. This leads to a reasonable assumption 
that the variance of each unit of travel is proportional to the distance travelled 
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where dL and dR are the distances travelled by each wheel, and and are constants 
with unit m

kL
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2
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4  Calibration of Systematic Error Using UMBmark Test 
 
UMBmark test [BorFen94] has been used for the calibration of wheel base error and 
unequal wheel diameter error. The principles and mathematical details of the 
procedures can be found in [BorFen94] so only key equations are summarised here. In 
short, the robot was programmed to travel a square path of side D in the clockwise 
sense (CW) for a number of times, say n, and the offsets of the final Cartesian 
coordinates from the initial Cartesian coordinates, exi,CW, eyi,CW were recorded. The 
experiment was repeated for the counterclockwise sense (CCW) and exi,CCW, eyi,CCW  
were recorded. The ‘tuning factors’ required to be incorporated into the software to 
counteract the effect of the systematic errors have been calculated from the weighted 
Cartesian offsets in both senses. As summary, the centres of gravity of the offsets can 
be computed from the their averages 
 

x exc g CW CCW n i CW CCW
i

n

. ., / , /=
=
∑1

1

 (5) 

y eyc g CW CCW n i CW CCW
i

n

. ., / , /=
=
∑1

1
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With the two pairs of centres of gravity, the tuning factors for the wheel base, 

the radius of left wheel and the radius of right wheel, cb, cl and cr, can be found by 
following this sequence of computations: 
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cb = −π π α/ ( )  (10) 
c El d= 2 / ( )+ 1  (11) 
c E cr d l=  (12) 

 
and finally, the measure of dead-reckoning accuracy for systematic errors has been 
defined in  [BorFen94] as 
 

(E x y x ysyst c g CW c g CW c g CCW c g CCWmax, . ., . ., . ., . .,max ,= + +2 2 2 2 )  (13) 

5  The New Non-systematic Error Model 
 
With the new non-systematic error model, the entire path travelled by the robot 

is treated as consisting of k small segments. Propagation of error covariance is 
required to be done k times to obtain the error covariance of the final state. This 
section shows that it is possible to obtain a closed form solution for this model, as k 
approaches infinity. The solution for a general circular arc motion is first developed. 
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The solutions for two special cases, straight line motion and on-spot turn are then 
obtained by suitably taking limits. 

 
Suppose that at segment k-1, the state of the robot is [ ]k k k k

Tx y− − − −=1 1 1 θS . 
It then propels its left wheel by L

1

]
k metre and its right wheel by Rk metre, to bring the 

robot to a new state S . Over an infinitesimal time increment, the 
speed of the wheels can be assumed constant, hence the path takes on a circular arc 
trajectory with constant radius of curvature r

[k k k k
Tx y= θ

k. Refer to Figure 2. 
 

 
Figure 2 : Initial and final state of the robot after following a circular arc trajectory 
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where rk is the instantaneous radius of curvature, 
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The next step is to propagate the error covariance matrix associated with (k-1)th 
stage to the kth stage. Given the error covariance matrix of Sk-1 and the input vector 

, and given the intuitive assumption that the error in stage k-1 is not 
correlated with the error introduced by the input, the covariance matrix of the next 
stage, k, can be evaluated using equation (2), where 

[uk k k
TL R=
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and as stated earlier, 
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Refer to Figure 2 again, suppose that the arc segment is now infinitesimally 

small, and the full path actually comprises k such segments being concatenated from 
end to end. The initial state of the robot is S0 which is at the starting end of the first 
segment and the last segment is Sk  which is the destination of the last segment.   
 

The expression for covariance propagation can be recursively expanded like a 
Markov process, 
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Let Li , Ri denote the small increments in wheel turn at for the ith segment, and 

for circular arc motion, L = kLi , R = kRi. Let r be the radius of curvature of the 
circular arc. 
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It is possible to show, by induction, that 
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and  
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Therefore the covariance of Sk can be further evaluated to  
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( ) [ ] ( ) [ ]

( ) [ ] ( ) [ ]∇ =

− + − −

− + − −

−





















= +

−

− − − −

−

− − − −∏ S f
j

i

i i

i

i i

i

i i

i

i i
j i

k

BR
L R i i k

BL
L R i i

BR
L R i i k

BL
L R i i

B B

r
B

r
B

r
B

r
B1

1 1

1 1

1 1

2 2

2 2

sin sin cos sin sin cos

cos cos sin cos cos sin

θ θ θ θ θ

θ θ θ θ θ θ

k

k

θ

 (24) 

The sum of products part of equation (23) gives rise to an error covariance 
matrix henceforth known as Cov(Uk). It is so named because it is contributed entirely 
by the error associated with the motion. Let Cov(Uk)i,j be the ith row, jth column 
component of Cov(Uk), after taking k→∞ 
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Where sgn(x)=|x|/x if x≠0 and 0 if x=0. These equations obviate the need to 
incrementally update the covariance matrix in small time steps. These are closed form 
expressions which are applicable to any circular arc motion with constant radius of 
curvature. For many applications, however, the robot will often need to perform two 
types of motion : straight line and rotation about the centre of the axle. The matrix 
terms can be further simplified by suitably taking limits. 

5.1  Special Case 1 : Straight Line Translation 
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For a straight line path of length D, both wheels rotates by the same amount and the 
initial angle is approximately the same as the finally angle, hence L,R→D and θ0→θk , 
The above equations can be simplified to 

[ ]Cov U D k k k k k kk k R L
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An insight into the model is crucial at this point. Suppose that the initial state 
 and is accurately known, that is Cov(S[S0 0 0 0= ]T

0)=0, so that the focus can 
be placed on the motion error. Physically, the robot moves in the x direction by D. 
The expressions for Cov(Uk) can be further simplified to 
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 (27) 

The model predicts that variance in the direction perpendicular to the direction 
of motion is proportional to the cube of the distance travelled, whereas the variance in 
the direction of motion is only proportional to the distance travelled. Also note that 
the correlation coefficient between the perpendicular distance error and the 
orientation error is D

B
D
B

D
B2 22 3 0 866/ .⋅ =2 3 . 

The model is also consistent. Unlike its classical counterpart, if propagation is 
done in multiple parts, the model generates exactly the same prediction. This is 
because the model itself is founded upon the concept of incrementally propagating 
error covariance from one infinitesimal section to the next. 

5.2  Special Case 2 : Rotation about the Centre of Wheel Axle 
 
For rotation about the centre of wheel axle, both wheels still rotate by the same 
amount, but in opposite direction. By letting L B

k→ −2 0( )θ θ and R B
k→ −2 0( )θ θ , 

the above equations can be simplified to 
 

[ ]Cov U k kk
B

k k R L k( ) ( ) sin( ) sin( ) ( )sgn( ),1 1 32 0 0
2 2
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2 2
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Cov U k kk B R L
k( ) (,3 3 2

2 20= +−θ θ )  

[ ]Cov U Cov U k kk k
B

k R L k( ) ( ) cos( ) cos( ) ( )sgn(, ,1 2 2 1 32 0
2 2

02 2= = − +θ θ θ )− θ  
Cov U Cov U k kk k R L k k( ) ( ) ( )(sin sin )sgn(, ,1 3 3 1

1
4

2 2
0 0= = − )− −θ θ θ θ  
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Cov U Cov U k kk k R L k k( ) ( ) ( )(cos cos )sgn(, ,2 3 3 2
1
4

2 2
0= = − )0− −θ θ θ θ  (28) 

6 Implementation and Results 
 
The experimental work comprises three stages : simulation, calibration for systematic 
errors and analysis of non-systematic errors. 

6.1  Simulation 
 
Monte Carlo simulations have been carried out to examine the validity of 
approximations being made in the course of deriving the model, and to envisage the 
vulnerability of its first order basis to various combinations of wheel variances, initial 
covariance and travel distance. Altogether seven combinations of conditions have 
been simulated and the comparison of mean and covariance are tabulated in Table 1 to 
Table 7. 
 

Number of Monte-Carlo Runs = 10000 
Wheel Base  = 0.4m 
Number of Partitions of Path = 10000 
Initial State  = [0 0 0]T 
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Table 1 : Simulation results with L=3m, R=1m, [σx σy σθ]T=[0 0 0]T 
 (I) kL=0.001m1/2 

kR=0.001m1/2 
(II) kL=0.003m1/2 

kR=0.002m1/2 
(III) kL=0.01m1/2 

kR=0.02m1/2 
 Theory Simul Theory Simul Theory Simul 

mean x (m) -0.38357 -0.383646 -0.38357 -0.383626 -0.38357 -0.383321 
mean y (m) -0.286535 -0.286721 -0.286535 -0.286685 -0.286535 -0.28738 

mean θ (rad) 1.28319 1.28368 1.28319 1.28357 1.28319 1.28458 
stddev x (m) 1.4376e-3 1.4253e-3 3.473e-3 3.4643e-3 2.4473e-2 2.4104e-2 
stddev y (m) 2.4666e-3 2.4172e-3 6.494e-3 6.402e-3 3.6930e-2 3.5939e-2 

stddev θ (rad) 5.0000e-3 4.9823e-3 0.01392 0.01392 6.6144e-2 6.5469e-2 
corr xθ (%) -59.47 -59.45 -64.81 -64.998 -52.882 -52.162 
corr yθ (%) -86.46 -86.19 -89.95 -89.875 -79.698 -78.803 
corr xy (%) 41.90 42.43 50.38 51.148 29.783 29.471 

 

Table 2 : Simulation results with L=15m, R=10m, [σx σy σθ]T=[0 0 0]T 
 (I) kL=0.001m1/2 

kR=0.001m1/2 
(II) kL=0.003m1/2 

kR=0.002m1/2 
(III) kL=0.01m1/2 

kR=0.02m1/2 
 Theory Simul Theory Simul Theory Simul 

mean x (m) -6.6322e-2 -6.7663e-2 -6.6322e-2 -6.748e-2 -6.6322e-2 -7.092e-2 
mean y (m) -2.2017e-3 -2.6005e-3 -2.2017e-3 -3.446e-3 -2.2017e-3 -2.249e-2 

mean θ (rad) 6.637e-2 6.767e-2 6.637e-2 6.757e-2 6.637e-2 7.137e-2 
stddev x (m) 1.5223e-2 1.5192e-2 3.933e-2 3.9251e-2 0.235605 0.23263 
stddev y (m) 8.723e-3 8.704e-3 2.1383e-2 2.1352e-2 0.145819 0.147936 

stddev θ (rad) 1.25e-2 1.2413e-2 3.3072e-2 3.2973e-2 0.185405 0.183095 
corr xθ (%) -82.348 -82.341 -84.3 -84.276 -78.975 -78.542 
corr yθ (%) -9.528 -9.686 -10.282 -10.424 -8.457 -9.375 
corr xy (%) 7.826 6.992 8.6489 8.045 6.657 6.015 

 

Table 3 : Simulation results with L=3m, R=1m, [σx σy σθ]T=[0.05m 0.05m 2°]T 
 (I) kL=0.001m1/2 

kR=0.001m1/2 
(II) kL=0.003m1/2 

kR=0.002m1/2 
(III) kL=0.01m1/2 

kR=0.02m1/2 
 Theory Simul Theory Simul Theory Simul 

mean x (m) -0.38357 -0.38294 -0.38357 -0.383273 -0.38357 -0.382952 
mean y (m) -0.286535 -0.287202 -0.286535 -0.287167 -0.286535 -0.287857 

mean θ (rad) 1.28319 1.283435 1.28319 1.2833 1.28319 1.28434 
stddev x (m) 5.099e-2 5.2362e-2 5.1094e-2 5.2508e-2 5.6546e-2 5.8017e-2 
stddev y (m) 5.1794e-2 5.1077e-2 5.2141e-2 5.1425e-2 6.3564e-2 6.2373e-2 

stddev θ (rad) 3.5e-2 3.5206e-2 3.7333e-2 3.7516e-2 7.4666e-2 7.4344e-2 
corr xθ (%) 19.025 19.083 16.383 15.9996 -12.131 -11.71 
corr yθ (%) -25.979 -26.72 -27.822 -28.434 -50.717 -49.487 
corr xy (%) -4.937 -3.317 -4.524 -2.715 3.819 5.185 
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Table 4 : Simulation results with L=15m, R=10m, [σx σy σθ]T=[0.05m 0.05m 2°]T 
 (I) kL=0.001m1/2 

kR=0.001m1/2 
(II) kL=0.003m1/2 

kR=0.002m1/2 
(III) kL=0.01m1/2 

kR=0.02m1/2 
 Theory Simul Theory Simul Theory Simul 

mean x (m) -6.6322e-2 -6.7422e-2 -6.6322e-2 -6.723e-2 -6.6322e-2 -7.0508e-2 
mean y (m) -2.2017e-3 -3.3320e-3 -2.2017e-3 -4.175e-3 -2.2017e-3 -2.3202e-2 

mean θ (rad) 6.63706e-2 6.7471e-2 6.63706e-2 6.727e-2 6.63706e-2 7.117e-2 
stddev x (m) 5.2266e-2 5.3774e-2 6.3615e-2 6.5274e-2 0.240852 0.238806 
stddev y (m) 5.0807e-2 5.0081e-2 5.4429e-2 5.3753e-2 0.15417 0.156657 

stddev θ (rad) 3.6827e-2 3.7032e-2 4.7893e-2 4.8004e-2 0.18861 0.186645 
corr xθ (%) -8.004 -7.548 -35.903 -35.278 -75.935 -75.161 
corr yθ (%) -4.809 -5.509 -5.842 -6.722 -8.137 -9.165 
corr xy (%) 0.3848 0.2199 2.0956 3.1899 6.159 5.8689 

 
Table 5 : Simulation results with L=3m, R=1m, [σx σy σθ]T=[0.1m 0.1m 5°]T 

 (I) kL=0.001m1/2 
kR=0.001m1/2 

(II) kL=0.003m1/2 
kR=0.002m1/2 

(III) kL=0.01m1/2 

kR=0.02m1/2 
 Theory Simul Theory Simul Theory Simul 

mean x (m) -0.38357 -0.381971 -0.38357 -0.381949 -0.38357 -0.381608 
mean y (m) -0.286535 -0.286882 -0.286535 -0.286846 -0.286535 -0.287527 

mean θ (rad) 1.28319 1.28306 1.28319 1.28296 1.28319 1.28398 
stddev x (m) 0.103082 0.105786 0.103131 0.105885 0.105938 0.108937 
stddev y (m) 0.105471 0.104072 0.110046 0.104245 0.111722 0.110046 

stddev θ (rad) 0.087321 8.7836e-2 0.109738 8.8878e-2 0.10943 0.109738 
corr xθ (%) 24.145 24.212 12.089 23.4391 11.401 11.444 
corr yθ (%) -31.768 -32.551 -39.425 -32.865 -39.767 -39.425 
corr xy (%) -7.669 -6.159 -3.428 -5.954 -4.783 -3.245 

 

Table 6 : Simulation results with L=15m, R=10m, [σx σy σθ]T=[0.1m 0.1m 5°]T 
 (I) kL=0.001m1/2 

kR=0.001m1/2 
(II) kL=0.003m1/2 

kR=0.002m1/2 
(III) kL=0.01m1/2 

kR=0.02m1/2 
 Theory Simul Theory Simul Theory Simul 

mean x (m) -6.6322e-2 -6.6998e-2 -6.6322e-2 -6.678e-2 -6.6322e-2 -6.9807e-2 
mean y (m) -2.2017e-3 -4.0477e-3 -2.2017e-3 -4.887e-3 -2.2017e-3 -2.3840e-2 

mean θ (rad) 6.6391e-2 6.7071e-2 6.6391e-2 6.6971e-2 6.6391e-2 7.0771e-2 
stddev x (m) 0.101152 0.10396 0.107457 0.110578 0.255949 0.254892 
stddev y (m) 0.100546 9.9042e-2 0.102424 0.100984 0.176909 0.179717 

stddev θ (rad) 8.807e-2 8.8607e-2 9.324e-2 9.3723e-2 0.20488 0.203619 
corr xθ (%) -1.571 -1.003 -10.777 -10.228 -65.756 -64.149 
corr yθ (%) -5.81 -6.53 -6.039 -6.956 -7.699 -9.134 
corr xy (%) 0.0913 1.9125 0.6508 -2.2438 5.0488 5.2486 
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Table 7 : Simulation results with L=15m, R=10m, [σx σy σθ]T=[0 0 0]T 
 (I) kL=0.05m1/2 

kR=0.05m1/2 
(II) kL=0.1m1/2 

kR=0.1m1/2 
(III) kL=0.5m1/2 

kR=0.5m1/2 
 Theory Simul Theory Simul Theory Simul 

mean x (m) -6.6322e-2 -5.7167e-2 -6.6322e-2 -2.795e-3 -6.6322e-2 0.372037 
mean y (m) -2.2017e-3 -0.189423 -2.2017e-3 -0.556837 -2.2017e-3 -0.310966 

mean θ (rad) 0.0663706 0.0714706 0.0663706 0.0753706 0.0663706 0.181841 
stddev x (m) 0.761173 0.67708 1.522347 1.1008 7.611734 2.436149 
stddev y (m) 0.436142 0.491106 0.872283 1.03646 4.361422 2.401108 

stddev θ (rad) 0.625000 0.62063 1.250000 1.241261 6.250000 6.206303 
corr xθ (%) -0.82348 -0.75888 -0.82348 -0.50629 -0.82348 0.057035 
corr yθ (%) -0.09528 -0.11516 -0.09528 -0.12235 -0.09528 0.041792 
corr xy (%) 0.078263 0.068023 0.078263 0.020512 0.078263 0.019032 

 
The values of kL and kR are not normally higher than 0.02m1/2 (amounts to a 

wheel standard deviation of 0.02m in 1m) because in practice better odometry is 
achievable by most existing odometry systems. In the first six cases, the standard 
deviations are at least an order of magnitude larger than the difference between the 
theoretical mean and the simulated mean. This bias in mean is in turn a lot smaller 
than the distance travelled and initial covariance. Despite going as high as 0.02m for 
the worst kL and kR in the sixth case, it has little impact on the prediction of standard 
deviation. The discrepancy in the estimation of standard deviation is a lot less than the 
initial error and distance travelled, on average 0.005% to 0.3% from the shortest test 
distance to the longest test distance for moderate kL and kR . The prediction of 
correlation coefficient is generally good except for corr xy, which shows significant 
discrepancy at large initial covariance. Expectably, standard deviation is dominated 
by initial errors when they are large. Therefore, Table 7 investigates the limitation of 
the model alone at large kR and kL by setting the initial errors to zero. For distance 
around 10m, the model performs marginally good at kR=kL=0.05m1/2. Beyond that, the 
performance deteriorates rapidly and a second order model becomes necessary. A 
orientation standard deviation of almost 2π for the largest wheel variances tested 
gives absolutely no angle information. 
 

In practice, the estimation of mean is believed to be more superior because it is 
calculated with the data from the wheel encoders. Therefore, the model for predicting 
the non-systematic error covariance can be regarded as statistically sufficient. 

6.2  Calibration for Systematic Error 
 
In this part of the experiment, the wheel encoder measurements were used to 
calculated the perceived final state of the robot, whereas the sonar array mounted on 
top of the robot was to used to estimate its actual state by sensing some reference 
walls placed close to the initial state. Two reference walls were used to establish the 
robot’s coordinates and orientation. Unfortunately, in collecting such statistics, errors 
were introduced by the sensor in two ways : 
 
• Systematic errors : Horizontal offsets of the sonar array from the midpoint of the 

wheel axle, and the misalignment of sonar array ‘zero’ direction with the normal of 
the wheel axle. 
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• Non-systematic errors : Discretisation of pan mechanism into steps of 0.18°, and 
the fluctuation of speed of sound. 

 
It remains unknown at this stage how these offset errors could be removed. The 

sonar array was positioned and aligned as accurately as possible, and the offsets were 
set to zero. The distance travelled was made large so that the odometry random errors 
outweigh the sensor errors. It is also justifiable to state that the non-systematic errors 
caused by the sonar sensor can be assumed small compared to the odometry errors. 
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Figure 3 : Result of UMBmark test, before and after calibration. 

 
The distribution of Cartesian offsets after the completion of D=4m square path 

for 5 runs in each sense (clockwise and counterclockwise), before and after 
calibration, are shown in Figure 3. The value of D has been chosen as such in order to 
make comparison with the results presented in [BorFen94]. 

 
Table 8 : Key results before and after calibration 

 Before Calibration After Calibration 
xc.g.,CCW (mm) 97 26 
yc.g.,CCW  (mm) -94 -20 
xc.g.,CW  (mm) 32 0.4 
yc.g.,CW  (mm) 31 -1 
Emax,syst (mm) 135 33 (4 folds ) 

wheel base (m) 0.37100 0.36898 
left wheel radius (m) 0.06890 0.068662 

right wheel radius (m) 0.06884 0.068871 
 

The calibration results are presented in Table 8. Comparison with other robot 
vehicles are made in Table 9, it can be seen that the measure of dead-reckoning 
accuracy for systematic errors, Emax,syst , is comparable to those achievable by many 
advanced but more costly odometry systems. To seek further improvement, further 
calibration has been carried out with the compensated parameters. It has been found 
that the parameter values fluctuated a little but insignificantly. The residual systematic 
errors could not be thoroughly removed despite repetitive trials. 
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Table 9 : Comparison of dead-reckoning accuracy and approximate cost of our design with four 
different vehicles. The first four sets of figures are obtained from [BorFen94] 

Tested Vehicle Calibrated ? Emax,syst 
(mm) 

Cost (US$) 

TRC LabMate yes average 27 $10K 
Cybermotion K2A (CARMEL) unknown 63 <$50K 

CLAPPER yes 22 $30K 
Andros with Encoder Trailer yes 74 unknown 

Ours yes 33 $4K 

6.3  Analysis of Non-systematic Error Source  
 
After calibration, the robot was programmed such that it scanned two reference walls, 
travelled forward 10 metres, travelled backward 10 metres, re-scanned the two 
reference walls and compared the position estimation from sonar sensing and 
odometry reading. The process was executed autonomously 60 times and the 
difference in the Cartesian coordinates, (ex, ey) and the difference in orientation et for 
all 60 runs are plotted against each other in Figure 4(a)-(c). By trial and error, it has 
been found that, if the robot is navigating on a flat parquetry floor, kL=0.00040m1/2, 
kR=0.00058m1/2, Expectably, these values are dependent upon the material of the 
floor. Despite various attempts, the author was unable to find the kL and kR that yield 
close approximation to all six elements in the actual covariance matrix. At this stage, 
it is believed that the y component, being the ‘off track’ error is very small, therefore 
highly sensitive to residual biases and outliers. Another possible cause is the 
misalignment of wheels. These likely factors have been taken into account while 
fitting kL and kR to the results by putting stronger emphasis on the ‘along track’ error 
and orientation error. In Figure 4, both the 95% confidence error ellipses of the actual 
data and the 95% confidence error ellipses generated with kL and kR are overlayed on 
the plots for comparison.  
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(a) ex versus ey 
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-3.50E-02

-3.00E-02

-2.50E-02

-2.00E-02

-1.50E-02

-1.00E-02

-5.00E-03

0.00E+00

5.00E-03

1.00E-02

-0.2 -0.15 -0.1 -0.05 0

ey

et

 
(c) ey versus et 

Figure 4 : Errors in the along-track direction (ex), the off-track direction (ey) and orientation 
(et), for 60 autonomous runs, are plotted against each other. The solid ellipses belong to the real 

data and the dashed ellipses are generated with the kR and kL obtained by trial and error. 
 

This part of the experiment is yet to be perfected. More data points are required 
to obtain large enough clusters for fitting error ellipses. As the next stage, many more 
experiments will be conducted to obtain statistically significant validation. 

7  Conclusion and Future Work 
 
This chapter draws together the key considerations and procedures involved in the 
calibration and statistical quantification of odometry error for a novel robot design. A 
precise odometry system is presented which is comparable to the best reported system 
but can be fabricated at half the cost. A new first order odometry error model has been 
derived to propagate the state error covariance following a motion. The error model 
takes the form of a covariance matrix which is prevalent in statistics and filtering 
theory, hence could easily fit into many powerful tools such as the Extended Kalman 
Filter. The limitation of the linearisation has been investigated in simulation. This 
model cannot account for unexpected errors such as hitting a bump on the floor, 
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which violates the flat floorplan assumption. Extra consideration is necessary. For 
certain applications such as mapping, external referencing should be deployed to 
correct such errors instead of treating them as systematic errors as done in 
[BorFen94]. Moreover, the values of kL and kR depend critically on the interaction 
between the encoder wheels and the floor. As future work, a new technique which 
employs laser beams will be developed to further validate the non-systematic error 
model. 
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