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Abstract

A technique for the synthesis of metastable-robust
self-timed digital circuits from Live Safe Simple Signal
Transition Graphs (LSS STGs) is described. In this
technique, the set of non-input choices and their
related signals are first identified. Metastable
behaviour of circuit elements implementing these
signals is next contained using Differential Threshold
Buffers (DTB), thus preventing circuit malfunctions.
An LSS STG is implemented as an example.

1. Introduction

Advances in VLSI technology over the past decades
have resulted in a significant scaling down in the
feature sizes of integrated circuits. An effect of this is
the lowering of the transit time of transistors, giving us
faster devices. However, since scaling entails an
increase in wire delays relative to transit time [1],
scaling also aggravates clock skew as designs require
faster and larger circuits. Synchronous systems with
asynchronous inputs are also inherently susceptible to
synchronisation failure due to the metastable failure of
storage devices [2-4]. This further limits the maximum
speed at which a synchronous circuit can be operated
reliably. To circumvent these timing difficulties and to
exploit the superior speed of scaled devices, designers
are now turning towards self-timed system design
methodology.

Currently, a number of techniques for the synthesis
of self-timed circuits are available. Amongst these is
the graph-theoretic approach using interpreted l/ive safe
Jfree-choice Petri Nets known as Signal Transition
Graphs (STGs) [5]. In this technique, the behaviour of
a self-timed circuit is first described using an STG. An
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implementation of the circuit is then derived using a
sequence of steps briefly summarised as follows:

» State graph derivation

* Karnaugh map generation for non-input signals
the

e Derivation of from

Karnaugh maps

logic expressions

Note that these are the principle steps for the
synthesis of a self-timed circuit from its STG
description. Variations of these along with procedures
to eliminate circuit hazards [6, 7], state assignment
problem [8] etc are frequently included.

To restrict an STG description to circuit behaviour
that is both realistic and implementable, a number of
restrictions have been previously employed. One of
these restrictions is that only transitions of input
signals can be specified at the output of a place with
more than one output transition. This restricts an STG
description to circuit behaviour involving only
sequential ordering, concurrency and input free
choices, excluding the description of circuit behaviour
involving non-input controlled choices such as an
arbitration circuit. To allow for the description of these
circuits, these restrictions are weakened as follows:

e The property of free-choice [9] restricts a
transition to at most one shared input place and
these transitions to have no other input places
(see Fig. la). This restriction is weakened to
allow simple places (see Fig. 1b), where
transitions with multiple input places can have
up to one shared input place.

¢ The restriction that transitions with a shared
input place must be transitions of input signals
only is relaxed to include transitions of non-
input signals. However, transitions sharing a
common input place must all be of the same type
(i.e., all input or all non-input and not a
mixture). A transition disabled by the firing of a



conflicting transition must also remain disabled
until all its input places are again non-empty
(i.e., the same transition must not be enabled
elsewhere when it has been disabled by the
firing of a conflicting transition).

input place of transitions
T; and T;

\ output transitions \ output transitions
of place Py of place p,
(a) (b)
Figure 1: (a) A free-choice place, p, with output
transitions t; and t; describing a free-choice
between the firing of transitions t; and T (b) A
simple place, p,, specifying a controlled choice
between the firing of 7; and 1; dependent on the

firing of T, and 1, :

These changes may result in metastable behaviour
[2, 3, 4, 10] in the implemented circuits due to the
firing of mutually exclusive signal transitions
implementing non-input choices. To prevent circuit
malfunctions due to metastability, a technique is
presented that implements metastable-robust self-timed
digital circuits from the broader class of live safe
simple STGs (LSS STGs) using differential threshold
buffers (DTBs).

This paper is organised as follows: In the next
section, an overview of the STG notation used in this
paper is presented. This is followed by a discussion of
the use of simple places in STGs and the general circuit
configuration associated the implementation of these
descriptions. In section 4, a CMOS differential
threshold buffer configuration and its characteristics
are presented. The technique for the synthesis of
metastable-robust self-timed digital circuits from LSS
STGs is then presented in section 5, followed by an
example in section 6 and conclusions in section 7.

2. Formal STG notation: an overview.

An STG description is
Z;=(P, T, F, My) where:

» J is the set of all network signals described in
the STG, Z;. The set of input and non-input

formally denoted by
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signals are denoted as Jy and Jyp respectively
with J = Jp U JNT

* P is the set of places in Zj,

« T, the of
(T=Jx{+-},

» F, the flow relation (F ¢ (P x T) U (T x P) such
that dom(F) = range(F) = P T) and

* My is the initial token marking on Zj.

set signal transitions in Xj

Similar to its Petri Net predecessor, the set of output

transitions for a given place p € P is denoted by p-.
Likewise, the set of token markings reachable from the
initial marking, M), is denoted by [M). For a given
marking M € [M), a transition Te T and place p € P,
M([7) denotes that transition T is enabled in marking M,
while M(p) denotes the number of tokens in place p at
the marking M.

The notation, jt, is used in this paper to denote
either a rising or a falling transition of a signal je J.
Additionally, the cardinality of a set, r, i1s denoted in
this paper as #(r). Note that in Fig. 1,

Py =pg = {‘Ci, ’Cj} and #(Pf') =#(ps)=2.

3. The General Configuration of Circuits
Implementing Non-input Choices.

In this section, the use of simple places in STGs and
their restrictions are examined. The configuration of
circuits implementing these descriptions are also
examined.

Unlike its free-choice counterpart, a simple place
does not always imply a non-deterministic choicel. An
example is the description of a linearly ordered set of
transitions using a simple place in Fig. 2a. In general, a
controlled choice specified using a set of n signal
transitions sharing a simple input place describes only
an m-way non-deterministic choice where 0 <m < n.
Choices between a transition, T, and both the rising and
the falling transitions of another signal can also be
specified using a simple place as shown in Fig. 2b.

To contain the complexity of these descriptions to
choices that can be implemented reliably, the
description of choices (both free and controlled) are
restricted as follows. In the case of input choices, note
that these choices are implemented by the environment
external to the circuit. Since it is not possible to

1 Choices whose outcome .is not deterministic can lead to

metastability if these choices are non-input choices.
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Figure 2. (a) The descrlptlon of a linearly
ordered set of transitions using a simple place
and (b) an LSS STG containing the description
of two 2-way choices, one between transition e-
and transition b+ and the other between
transition e— transition b-.

deduce the structure of the external circuit from the
structure of the input choice described in an STG,
meaningful restrictions on the description of input
choices cannot be derived. The description of input
choices can hence be used to simplify an STG
description. However, care should be taken to ensure
that the description is consistent with the behaviour of
these input signals.

In the case of non-input choices, note that the firing
of mutually exclusive signal transitions implementing
non-input choices can result in metastability as the
firing of these transitions disable one another.
(Consider the firing of e~ and b- in Fig. 2b) To
identify the set of signals which are susceptible to
metastability, we defined the M-set of an STG as
follows:

Definition: M-set

Given an LSS STG, X;=(P,T,F,My), the
M= {0 | JicInp pie Pijeliojte p;i'} is
called the M-set of £ if and only if ¥V (J;, pye M,

set

« #(p;)>1and
* 3 M e [My) such that at least two transitions, T,
and 1y € p;*, are enabled in marking M.
1
In other words, it is a collection of places describing
non-input choices in the STG and the corresponding set

of signals whose transitions are specified at the output
of these places. As an example, notice that the M-set of

the STG in Fig. 2b is {{{e, b}, p1}} if both e and b are
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non-input signals; while the M-set of the STG in Fig. 2a
is an empty set since it does not describe a choice.

To contain the complexity of circuits implementing -
non-input choices to cross-coupled configurations? the
following restrictions on the description of non-input
choices are employed.

Non-input choice restriction
Given an LSS STG, V {J;, pjye M
(DL#IT) =#(p;)

(i.e., the set of transitions specified at the output
of a place describing a non-input choice are all
transitions of different signals)

Q)jel;=ALppe M:itkandje Jy
(i.e., each signal may appear in an M-set only
once)

BV, e p;

dMe [My) : Mit) A M[ty) => the firing of
transition T, and T, are mutually exclusive (i.e.,
Y M’ € [M) such that M[o)M’ for some G € T*,
Ty, To € © if and only if A0, 6, € T* such that
6 =0, 6, and M[c)M” where M"(p;)#0). In
other words, a transition of a signal disabled by
the firing of a conflicting transition sharing a
common input place p; can only be enabled after
place p; becomes non-empty again.

1

To appreciate the significance of these restrictions
on the configuration of circuits implementing non-input
choices, consider the following theorems.

Theorem 1

Given an LSS STG, Z;=(P,T,F,My), if Ape P :
pr=1{nt %2t} and AM e [My) : M(p) 20 A M[)%)
A Mxo%), %1 and Y, can be implemented using a
cross-coupled configuration if the firing of transitions
1% and Yo* are mutually exclusive.

Proof:

Firstly, note that place p may either be a free-choice
or a simple place describing a choice between the firing

2 The implementation for a set of signals xq, X7, o Xy is said to
have a cross-coupled configuration if the implementation of

= l—n[(xk +rmy) fa
k=1

ki

each signal has the structure or

n
X; = Y.X my + fy where my is either 1 or 0 and f; is the
k=1

k=i

remaining expression of x;.
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Figure 3:
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(a) The mutual exclusive firing of x4+ and xo+ at place p and (b) its corresponding
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non-semi-modular (defined in [12]) state graph structure. In the case where place p corresponds to a
free-choice place, its state graph structure can be derived from the structure in (b) by collapsing all

paths s 2§ s’ and s J] s’ to state s.

of transitions ¥+ and y,*. Translated to the state
graph level, this corresponds to a non-semi-modular3
structure as depicted in Fig. 3b where the firing of %
and y,% at state s disable the firing of one another. In
the case where the firing of transitions y;+ and y,* are
mutually exclusive, the logical state of y; () will
remain unchanged throughout the sequence of
transitions between the firing of 3% (y1%) to the firing
of its reverse transition Y,F (x1¥F) as shaded in Fig. 3b.
Considering that transitions x;* and ¥, may either be
a rising or a falling transition, the structure in Fig. 3
can be further classified into three different cases,
namely:

Case 1: both transitions y;+ and x,*
rising transitions

both transitions ;% and x,*
falling transitions

one of transitions ¥+ and ¥, is
a rising transition while the other
a falling transition

are

Case 2: are

Case 3:

Case 1:

In the case where both transitions X% and x,t are
rising transitions, X (X,) will remain unchanged at
logic 0 throughout the sequence of transitions from y,+
(X1+) to xo— (x;—). Considering the mapping of a
Karnaugh map from its state graph [5, 13], this
indicates that the implied values of % (x,) are 1s only
in the region within the Karnaugh map where the
logical state of y, ()%;) is 0. The implementation for

3 The term semi-modular refers to the property where an enabled
transition cannot be disabled by the firing of another transition
[12]. Note that this definition differs from [11].
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both % and %, derived in the sum of products (SOP)
form will hence have the canonical form

X1=%2Jar

X2 =%1 Jaz
where f;; and fj, are the remaining expressions for X1
and x, and are free from the literals y, and ¥
respectively.  Using De Morgan's theorem, these
expressions can be rearranged into the following form

corresponding to a cross-couple NOR structure
depicted in Fig. 4a.

X1=X2+E
X2=X1+E

Case 2:

In the case where both transitions ¥+ and y,* are
falling transitions (the reverse of case 1 above), the
implied values of %y (x,) are Os only in the region
within the Karnaugh map where the logical state of y,
(%1) is 1. Similar to case 1 above, the implementation
for both x; and ¥, derived in the product of sums
(POS) form will hence have the canonical form

X1 =%X2+fan
X2 =X1+fao

Likewise, these expressions can be rearranged into
form

X1=X2'E
X2=X1'E




f N
41 % 1 f dl 4 1
fin Y20 Fa %2
() (b)
£ —
dl X 1 fdl yé 1
T — X2y &
(©) (d)
Figure 4: The different cross-coupled

configurations implementing x4 and y» where the
firing of y 1+ and yo+ are mutually exclusive.

corresponding to a cross-coupled NAND structure
depicted in Fig. 4b.

Case 3:

In the case where one of transitions )% and xp% is a
rising transition and the other a falling transition, say
transitions 7+ and ¥,-. The mutual exclusion
between these transitions will result in % (¥,) having
implied values of 1s (0s) in the region within the
Karnaugh map where the logical state of x5 (X1) is
1(0). The expressions for %; and y, derived in the
SOP and POS form respectively will have the canonical
form

X1=%2 Ja1

X2 = X1+ faz
Similar to the cases above, these expressions can be
rearranged into

X1=%2 fan

=%+
X2 =X1"faz X2 =X1t+fa2
corresponding to the cross-coupled NAND and

cross-coupled NOR depicted in Fig. 4c and Fig. 4d
respectively.

From the above analysis, note that irrespective of the
nature of transitions )% and ¥,%, due to the mutual
exclusion between the firing of these transitions, ¥ and
%2 can be implemented using a cross-coupled gate
configuration proving the theorem.
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Note that this theorem is also valid for places
specifying the firing of more than 2 mutually exclusive
transitions. However, since the above derivation is
only valid if the logical state of ¥; (X,) remains
unchanged throughout the sequence between the firing
of %o (x13) to the firing of its reverse transition y,F
(31F), this theorem is not valid in places specifying the
mutual exclusive firing of a transition T with both the
rising and the falling transition of another signal as
depicted in Fig. 2b.

Theorem 2
Given an LSS STG, Z;=(P, T, F, My), and its M-set,
M the implementation for the set of signals in J; for

some {J;, p;)e M has a cross-coupled gates
configuration if the non-input choice restriction above
is satisfied.
Proof:

Firstly, notice that for a pair of J; € Jyj and p; € P

such that (J;, p;y e M:

(1)#(J;) denotes the number of signals whose
transitions are at the output of p,  Hence,
#(J;) = #(p;*) implies that A a signal j € J; such
that both transitions j+ and j— are elements of

p;*. Since (Jj,pj) corresponds to a choice

between the firing of transitions in p;, this also
implies that V j" € J;, 4 a signal j € J; such that
the firing of j’t and j+, and the firing of j’+ and
J— are mutually exclusive at place p;.

I jelJ; = AJppe M : jeJ;, this will
restrict the set of J; V (Jj, pj) e M to a disjoint
sets. In other words, V j e J;, the firing of the

transition for signal j is only mutually exclusive
with the transition of other signals j* € J;.

Collectively, these imply that, V {(J;, p,) € M, the
transition of a signal j € J; is mutually exclusive of the
transition of another signal j e Jyp if and only if
j € J;. Additionally, there will not exists a signal j € J;
whose transition is mutually exclusive of both the rising
and the falling transition of another signal j e J;.
Using Theorem 1 above, due to the mutual exclusion
between the firing of their transitions, the
implementation for the set of signals J; can hence be

implemented using a cross-coupled gate configuration.
]

Theorems 1 and 2 hold for m-way non-input choices
where m 2 2. For reasons of clarity and simplicity, we



Ack2 switches to logic high

Avdd VGND

Qt Vdd

Vi Ackl

V2

Ack2

3:{

in this region and a logic
low in all other region

4

V2 -V1>Vth

Vdd-Vth,/’
A L e
:/
Vdd - Vth

Ack1 switches to
logic high in this
region and a logic
low in all other
region.

Vi

- "Vth

vdd
A= V1 -V2>Vth

(@)

(b)

Figure 5: (a) A two input CMOS DTB and (b) its characteristic.

present examples and circuits for 2-way choices
(m=2).

4. CMOS Differential Threshold Buffer

The implementation of mutually exclusive non-input
choices using the cross-coupled gate configuration can
result in metastable behaviour. As an example,
consider the concurrent firing of transitions y;+ and
%o+ at state s of Fig. 3b in the configurations in Fig. 4
above. Due to the mutual exclusion between the firing
of these transitions, note that the firing of y+ will
disable the firing of y,+ and vice versa. This may
drive the cross-coupled into a metastable state and may
also result in malfunctions if the metastable behaviour
of 1 and Y, is allowed to influence other parts of the
circuit. To isolate the metastable behaviour of the
cross-coupled from the rest of the circuit, and hence
avoid circuit malfunctions, we have developed a CMOS
Differential Threshold Buffer (DTB) as depicted in
Fig. 5a. The characteristic of the DTB is briefly
summarised as follows:

(1)Both Ackl and Ack2 remain at logic 0 while V1
and V2 are within Vth (threshold voltage of
transistor Qy) of each other, V1 - V2| < Vith.

(2)Ackl becomes logic 1 while Ack2 remains at
logic O in the region where V1 - V2 > Vth.
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(3)Ack2 becomes logic 1 while Ackl remains at
logic 0 in the region where V1 — V2 < ~Vith.

For an active low configuration, the dual circuit is
shown in Fig. 6. Note that these DTB configurations
can be easily extended to more than two inputs but with
a corresponding deterioration of speed. See the
Appendix for details. An nMOS DTB configuration
can be found in [1].

Here, it is assumed that the cross-coupled is
designed so that the metastable region is extremely
unlikely to be re-entered, due to circuit noise, once the
outputs differ by more than the threshold Vth of the
MOS transistors. To achieve reliable performance, the
cross-coupled stage should be designed with the DTB
as one unit.

5. A Technique for Implementing Live Safe
Simple STGs.

Utilising the above theorems and restricting the
description of non-input choices in an LSS STG as
specified earlier, it has been shown that circuits
implementing these choices have cross-coupled gates
configuration. Due to the non-semi-modular structure
of these choices, the cross-coupled configurations
implementing non-input choices may result in
metastability while the firing of mutually exclusive



transitions disables each other. However, a
metastable-robust implementation can be derived if the
metastable characteristic of the cross-coupled is
contained within the cross-coupled using DTBs. A
technique for the synthesis of metastable-robust
self-timed digital circuit from LSS STGs is developed
along this approach.

Vit ot Ack1*
Qt
V2* Ack2*
Dvdd v GND
(a)
Vi* Ack1*
.__O D._
DTB
‘_O O_
Va* Ack2*
(b)
Figure 6: (a) The dual DTB configuration of

Fig. 5a and (b) its block representation.

Procedure: Metastable-robust implementation of LSS
STGs.

Given an LSS STG, Z;=(P, T, F, My), satisfying the
above non-input choice restriction

(1)Determine its M-set, M

(2)Implement all the non-input signals.

(3)For all {J,ppe M rearrange the logic

expressions of the set of signals J; into an
equivalent cross-coupled form.
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(4)Implement the set of signals J; using an
appropriate  cross-coupled/DTB  combination
with the output of the DTB now taken as the set
of clean signals implementing J;.

6. An Example.

As an example, consider the LSS STG description in
Fig. 7a. Note that the M-set for the STG is
M= {({A1, A2}, p1)}. Using a previously published
procedure [13], the logic expressions derived for all the
non-input signals are:

Al=A2+RI1

A2=Xx-(z+y)+Al
x=A27
z=2-y+R2

Rearranging the expressions for A1 and A2 into the
cross-coupled form

Al=A2-R1

A2=A1-x-(z+Y)
and using the DTB configuration in Fig. 6, this leads to

a metastable-robust implementation of the LSS STG in
Fig. 7b.

7. Conclusions

A technique for the synthesis of metastable-robust
self-timed digital circuits from live safe simple signal
transition graphs using CMOS differential threshold
buffers has been described. In this technique, the
description of non-input choices is restricted to contain
the complexity of these implementations to
cross-coupled configurations. Metastable characteristic
of these configurations is isolated from the rest of the
circuit using an appropriate differential threshold
buffer. To achieve reliable performance, the
cross-couple/DTB configuration should be designed as
one unit.
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the position of this line is
dependent on the characteristic

of the invertor generatingVi }

170) Vi = Viha @t switches off

Region where Vdd V1= V2-Vth
Ack1 switches to GND
Vdd
Q4 Vi
t
Vi 9 Ackl
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Figure 8: (a) The basic component of the DTB configuration in Fig. 5a — one is required for each
input and (b) its characteristics.

VK

Vil
Figure 9: The basic component of a 3 input CMOS DTB - three of these are required with Ackl,
Ack2 and Ack3 obtained by substituting ijk=123,231, 31 2. respectively.
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