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Abstract

This paper addresses the problem of rejecting interfer-
ence due to secondary specular reflections, cross-talk
and other mechanisms in an active light stripe scanner
for robotic applications. Conventional scanning meth-
ods control the environment to ensure the brightness of
the stripe exceeds that of all other features. However,
for a robot operating in an uncontrolled environment,
valid measurements are likely to be hidden amongst
noise. Robust scanning methods already exist, but suf-
fer from problems including assumed scene structure,
acquisition delay, lack of error recovery, and incorrect
modelling of measurement noise. We propose a ro-
bust technique that overcomes these problems, using
two cameras and knowledge of the light plane orien-
tation to disambiguate the primary reflection from spu-
rious measurements. Unlike other robust techniques,
our validation and reconstruction algorithms are opti-
mal with respect to sensor noise. Furthermore, we pro-
pose an image-based procedure to calibrate the system
using measurements of an arbitrary non-planar target,
providing robust validation independently of ranging
accuracy. Finally, our robust techniques allow the sen-
sor to operate in ambient indoor light, allowing colour
and range to be implicitly registered. An experimental
scanner demonstrates the effectiveness of the proposed
techniques.

1 Introduction

Light stripe ranging is an active, triangulation-based
technique for non-contact surface measurement that has
been studied for several decades [22, 1]. By project-

ing a known feature onto the measured surface, active
scanners provide a more robust solution to the measure-
ment problem than passive ranging techniques. A re-
view of light stripe scanning and related range sensing
techniques can be found in [13, 4, 5]. Range sensing is
an important component of many robotic applications,
and light stripe ranging has been applied to a variety
of tasks including navigation [19, 2], obstacle detection
[12], object recognition for grasping [3, 21], and visual
servoing [7].

The drawback of conventional single-camera light
stripe ranging techniques is that favourable lighting
conditions and surface reflectance properties are re-
quired, which allow the stripe to be identified as the
brightest feature in the captured image. However, the
range sensor presented in this paper is intended for use
on a humanoid robot operating in an uncontrolled do-
mestic environment [24, 25]. Under these conditions,
various noise mechanisms interfere with the sensor to
defeat conventional stripe detection techniques: smooth
surfaces cause secondary reflections, edges and textures
may have a stripe-like appearance, and cross-talk can
arise when multiple robots scan the same environment.
The motivation for this work was to develop a robust
light stripe sensor suitable for operation in these noisy
conditions.

A number of techniques for improving the robust-
ness of light stripe scanners have been proposed in other
work, using both stereo and single-camera configura-
tions. Mageeet al. [16] develop a scanner for industrial
inspection using stereo measurements of a single stripe.
Spurious reflections are eliminated by combining stereo
fields via a minimum intensity operation. This tech-
nique depends heavily on user intervention anda pri-
ori knowledge of the scanned target. Truccoet al. [27]
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also use stereo cameras to measure a laser stripe, and
treat the system as two independent single-camera sen-
sors. Robustness is achieved by imposing a number
of consistency checks to validate the range data, the
most significant of which requires independent single-
camera reconstructions to agree within a threshold dis-
tance. Another constraint requires valid scanlines to
contain only a single stripe candidate, but a method for
error recovery in the case of multiple candidates is not
proposed. Thus, secondary reflections cause both the
true and noisy measurements to be rejected.

Nakanoet al. [18] develop a similar method to reject
false data by requiring consensus between independent
scanners, but using two laser stripes and only a single
camera. In addition to robust ranging, this configuration
provides direct measurement of the surface normal. The
disadvantage of this approach is that each image only
recovers a single range point at the intersection of the
two stripes, resulting in a significant acquisition delay
for the complete image.

Other robust scanning techniques have been pro-
posed using single-camera, single-stripe configurations.
Nygards and Wernersson [20] identify specular reflec-
tions by moving the scanner relative to the scene and an-
alyzing the motion of reconstructed range data. In [12],
periodic intensity modulation distinguishes the stripe
from random noise. Both of these methods require
data to be associated between multiple image, which is
prone to error. Furthermore, intensity modulation does
not disambiguate secondary reflections, which vary in
unison with the true stripe. Alternatively, Clarket al.[6]
use linearly polarized light to reject secondary reflec-
tions from metallic surfaces, based on the observation
that polarized light changes phase with each specular
reflection. However, the complicated acquisition pro-
cess requires multiple measurements through different
polarizing filters.

Unlike the above robust techniques, the method pro-
posed in this paper uniformly rejects interference due to
secondary reflections, cross-talk, background features
and other noise mechanisms. The proposed algorithm
solves the association problem to allow the true stripe to
be disambiguated from a set of noisy candidates. Thus,
our method offers a significant improvement over pre-
vious techniques for error detection, by providing both
noise rejection andrecoveryof valid measurements.
The depth data reconstructed by our stereo scanner is
optimal with respect to sensor noise (unlike the stereo
techniques in [18, 27]), and fuses stereo measurements
with the light plane parameters. Thus, our sensor pro-
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Figure 1: Experimental stereoscopic light stripe scanner

vides greater precision than a single-camera configu-
ration, as demonstrated experimentally. Furthermore,
we develop an image-based calibration procedure using
a scan of a non-planar but otherwise arbitrary surface.
Our calibration procedure provides robust validation in-
dependently of ranging accuracy. Finally, the ability of
our sensor to operate in ambient indoor light allows sur-
face colour and range to be captured in the same cam-
eras. Since the intended application is to support object
modelling and tracking [24], this implicit registration
of colour and range is highly desirable. The system de-
scribed in this work was first proposed in [26], and is
extended here by providing a more rigorous treatment
with respect to measurement noise.

The following Section briefly describes the hardware
configuration of our stereo stripe scanner. Section 3
develops the underlying framework for optimal noise
rejection and reconstruction. Image-based calibration
of the system is described in Section 4. Implementa-
tion details are discussed in Section 5, and Section 6
presents experimental results to compare the perfor-
mance of our system with other stripe scanning tech-
niques.

2 Overview

2.1 Basic Operation

Figure 1 shows the components of the experimental
stereoscopic light stripe scanner, which is mounted on a
pan/tilt active head. A vertical light plane is generated
by a laser diode module with a cylindrical lens, and is
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Figure 2: Light stripe camera system model.

scanned across a scene by rotating the laser about a ver-
tical axis. The angle of rotation is measured by an opti-
cal encoder connected to the output shaft via a toothed
belt. PAL colour cameras capture stereo images of the
stripe at 384×288 pixel (half-PAL) resolution.

Captured image are processed to extract all possible
locations of the light stripe on each scanline. Scan-
lines typically contain multiple candidates, with the
true stripe (primary reflection) hidden amongst spuri-
ous measurements. The true stripe is identified on each
scanline by searching for the pair of stereo measure-
ments most likely corresponding to the projection of a
3D point on the light plane, given the current encoder
measurement. The validation process is detailed in Sec-
tion 3. Finally, the validated measurements are used to
reconstruct the 3D profile of the illuminated surface.

As the stripe is scanned across the scene, the laser
profiles are assembled into an array of 3D points, which
is referred to as arange map. A colour image is cap-
tured and registered with the range map at the comple-
tion of a scan. Captured frames are processed at PAL
frame-rate (25 Hz) on the 2.2 GHz dual Xeon host PC.
Motor control and optical encoder measurements are
implemented on a PIC microcontroller, which commu-
nicates with the host PC via an RS-232 serial link.

2.2 Coordinate Frames and Notation

The following sections adopt the convention of repre-
senting 3D points in upper-case, such asX, and 3D
points on the image plane using lower-case, such asx,
with all vectors inhomogeneouscoordinates. Coordi-
nate frames are specified in super-script, such asAX,

and the homogeneous transformation matrixBHA trans-
forms points from frameA to frameB asBX = BHA

AX.
Figure 2 shows the relevant coordinate frames for the
experimental scanner:L andR denote the left and right
camera frames,P is rigidly attached to the light plane
andW is the world frame.

The cameras are modelled by the 3×4 projection ma-
tricesLP andRP, which project points from the world
frame onto the image planes according to the homoge-
neous transformationL,Rx = L,RPWX. The cameras are
arranged in a rectilinear stereo configuration (parallel
axes and coplanar image planes), with optical centres at
CL,R = (∓b,0,0)> (taking the negative sign forL and
positive forR) in the world frame. In practice, the cam-
eras can verge about they-axis (violating the conditions
of rectilinear stereo) but rectilinear measurements are
recovered by applyingprojective rectificationto cap-
tured frames (see [10]). Thus, without loss of gener-
ality, the analytical models consider only the rectilinear
arrangement shown in Figure 2.

2.3 System Model

A theoretical model of the experimental scanner is now
developed to identify points on the light plane. Since
the light plane is fixed inP, points PX on the plane
may be represented by the plane equationPΩ>PX = 0,
wherePΩ represents the parameters of the light plane.
Now, P is defined such that the light plane is approxi-
mately vertical and parallel to thez-axis, which allows
PΩ to be expressed as

PΩ = (1, B0, 0, D0)> (1)

whereB0 is related to the small angle between the plane
and they-axis (B0 � 1 for an approximately vertical
plane), andD0 is the distance of the plane from the ori-
gin. During a scan, frameP rotates about itsy-axis with
angleθy, whereθy , 0 when the light plane is parallel
to the optical axes of the cameras. The rotation axis in-
tersects thexz-plane of the world frame at(X0,0,Z0)>,
and the orientation of the rotation axis relative to the
y-axis of the world frame is defined by the small fixed
anglesθx andθz. The scan angle (θy in Figure 2) is lin-
early related to the measured optical encoder valueevia
two additional parametersmandk:

θy = me+k (2)

Now let WHP represent the homogeneous coordi-
nate transformation fromP to W. If Rx(θx), Ry(θy)
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and Rz(θz) represent the homogeneous transforma-
tions for rotations about thex, y and z-axes, and
T(X0,0,Z0) represents the transformation for transla-
tion by (X0,0,Z0)>, WHP can be expressed as

WHP = T(X0,0,Z0) ·Rz(θz) ·Rx(θx) ·Ry(θy) (3)

It is straightforward to show that ifWHP is the coordi-
nate transformation fromP to W, the plane parameters
transform fromP to W as

WΩ = (WHP)−> ·PΩ (4)

Finally, combining equations (3) and (4) and making
the simplifying assumptionsB0,θx,θz � 1 to elimi-
nate insignificant terms, the laser plane parameters can
be expressed in the world frame by the approximate
model:

WΩ≈


cosθy

θx sinθy +θzcosθy +B0

−sinθy

−X0cosθy +Z0sinθy +D0

 (5)

whereci = cosθi andsi = sinθi , for i = x,y,z. Now, us-
ing equations (2) and (5), points in the world frame can
be identified as coincident with the light plane (given
the system parameters and current encoder measure-
ment) using the plane equation:

WΩ>(B0,D0,X0,Z0,θx,θy,θz)WX = 0 (6)

3 Robust Stripe Scanning

3.1 Problem Statement

As discussed earlier, the problems associated with light
stripe scanners result from ambiguity in identifying the
primary reflection. The following sections describe an
optimal strategy to resolve this ambiguity and robustly
identify the stripe in the presence of secondary reflec-
tions, cross-talk and other sources of noise by exploit-
ing redundancy.

Figure 3 shows a simplified plan view of the scan-
ner to demonstrate the issues involved in robust stripe
detection. The surface atX causes a primary reflection
that is measured (using a noisy process) atLx andRx on
the stereo image planes. However, a secondary specular
reflection causes another stripe to appear atX′, which is
measured on the right image plane atRx′ but obscured
from the left camera (in practice, such noisy measure-
ments are produced by a variety of mechanisms other
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Figure 3: Validation/reconstruction problem.

than secondary reflections). The 3D reconstruction for
each measurement, labelled̂XL, X̂R and X̂′

R in Figure
3, is recovered as the intersection of the light plane and
a ray back-projected through the image plane measure-
ments. These points will be referred to as thesingle-
camera reconstructions. As a result of noise on the
CCD (exaggerated in this example), the back-projected
rays do not intersect the physical reflections atX and
X′.

The robust scanning problem may now be stated as
follows: given the laser plane position and the mea-
surementsLx, Rx andRx′, one of the left/right candidate
pairs, (Lx,Rx) or (Lx,Rx′), must be chosen as represent-
ing stereo measurements of the primary reflection. Al-
ternatively, all candidates may be rejected. This task is
referred to as thevalidation problem, and a successful
solution in this example should identify (Lx,Rx) as the
valid measurements. The measurements should then be
combined to estimate the position of the ideal projection
Rx̂ (arbitrarily chosen to be on the right image plane) of
the actual pointX.

Formulation of optimal validation/reconstruction al-
gorithms should take account of measurement noise,
which is not correctly modelled in previous related
work. In [27] and [18], laser stripe measurements are
validated by applying afixed threshold to the differ-
ence between corresponding single-camera reconstruc-
tions (̂XL, X̂R andX̂′

R in Figure 3). Such a comparison
requires a uniform reconstruction error over all depths,
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which Figure 4 illustrates is clearly not the case. Two
independent measurements atx1 andx2 generally ex-
hibit a constant error variance on the image plane, as in-
dicated by the intervalδx. However, projectingδx onto
the laser plane reveals that the reconstruction error in-
creases with depth, since∆X1 < ∆X2. Thus, the valida-
tion threshold on depth difference should increase with
depth to account for measurement noise, otherwise val-
idation is more lenient for closer reconstructions. Sim-
ilarly, taking eitherX̂L, X̂R or the arithmetic average
1
2(X̂L + X̂R) as the final reconstruction is generally sub-
optimal for noisy measurements.

The following sections present optimal solutions to
the validation/reconstruction problem, based on an er-
ror model with the following features (the assumptions
of the error model are corroborated with experimental
results in Section 6.2):

1. Light stripe measurement errors are independent
and Gaussian distributed with uniform variance
over the entire image plane.

2. The dominant error in the laser plane position is
the angular error about the axis of rotation due to
the shaft encoder (e in equation (2)), which cou-
ples all the image plane measurements in a given
frame.

3. All other parameters described in Section 2.3

(apart from the visual measurements and shaft en-
coder position) are assumed to be known with suf-
ficient accuracy that any uncertainty can be ig-
nored for the purpose of validation and reconstruc-
tion.

3.2 General Solution

We now present a general analytical solution to the vali-
dation/reconstruction problem. LetLx andRx represent
noisy candidatemeasurements of the stripe on corre-
sponding epipolar lines, and letΩ = (A,B,C,D)> rep-
resent the parameters of the light plane. Thecostof as-
sociating the measurements with the primary reflection
of the stripe can be formulated as an error distance on
the image plane (similar to the reconstruction method
proposed in [11]). Let̂X represent the minimum mean
squared error 3D reconstruction, which is constrained to
coincide with the laser plane, but not necessarily at the
intersection of the back-projected rays from the noisy
image plane measurements. Errors in the light plane
parametersΩ are considered in the next section, but for
now the light plane parameters are assumed to be known
exactly. The optimal reconstruction̂X corresponds to
the ideal projections,Lx̂ and Rx̂, on the left and right
image planes according toL,Rx̂ = L,RPX̂. Now, the sum
of squared errors between the ideal and measured points
can be used to determine whether the candidate mea-
surement pair (xL,xR) corresponds to a point̂X on the
light plane:

E = d2(Lx,LPX̂)+d2(Rx,RPX̂) (7)

whered(x1,x2) is the Euclidean distance betweenx1

andx2. For a given candidate pair, the optimal recon-
structionX̂ with respect to image plane error is found
by a constrained minimization ofE with respect to the
condition that̂X is on the laser plane:

Ω>X̂ = 0 (8)

When multiple ambiguous correspondences exist, equa-
tion (7) is optimized with respect to the constraint in (8)
for all possible candidate pairs, and the pair with mini-
mum error is chosen as the most likely correspondence.
Finally, the result is validated by imposing a threshold
on the maximum allowed squared image plane errorE.

Performing the constrained optimization of equations
(7)-(8) is analytically cumbersome. Fortunately, the
problem may be reduced to an unconstrained optimiza-
tion by formulating the ideal left projectionLx̂ as a func-
tion of the ideal right projectionRx̂ for points on the
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light plane. To determine this relationship, the 3D re-
construction is first expressed as a function ofRx̂ by
taking the intersection of the laser plane and the ray
back-projected fromRx̂. Plücker matrices provide a
concise notation for the intersection of planes and lines
(see [9]). IfA andB represent the homogeneous vectors
of two points on a line, the Plücker matrix L describing
the line is

L = AB>−BA> (9)

Then, the intersectionX of a planeΩ and the line de-
scribed by L is simply

X = LΩ = (AB>−BA>)Ω (10)

The Pl̈ucker matrix for the back-projected ray from
Rx̂ can now be constructed from two known points on
the ray: the camera centreCR, andRP+Rx̂, whereRP+ is
the pseudo-inverse of the camera projection matrixRP
such thatRP(RP+Rx̂) = Rx̂, given by

RP+ = RP>(RPRP>)−1 (11)

Applying these to equation (9), the Plücker matrix for
the back-projection ofRx̂ is

L = CR(RP+Rx̂)>− (RP+Rx̂)C>
R (12)

The intersection of L with the laser planeΩ, can now
be expressed using equation (10) as:

X̂ = LΩ = [CR(RP+Rx̂)>− (RP+Rx̂)C>
R ]Ω (13)

Finally, the ideal projectionLx̂ corresponding toRx̂ is
obtained by projectinĝX onto the left image plane:

Lx̂ = LPX̂

= LP[CR(RP+Rx̂)>− (RP+Rx̂)C>
R ]Ω

= LPCR(RP+Rx̂)>Ω− LP(RP+Rx̂)(C>
RΩ)

Using the identity(RP+Rx̂)>Ω = Ω>(RP+Rx̂), and not-
ing that(C>

RΩ) is scalar, the common factors and col-
lected to simplify the above expression to

Lx̂ = LP(CRΩ>)(RP+Rx̂)− LP(C>
RΩ)(RP+Rx̂)

=
(

LP[CRΩ>− (C>
RΩ)I]RP+

)
Rx̂ (14)

Equation (14) is of the formLx̂ = HRx̂ and simply states
that points on the laser plane induce a homography be-
tween coordinates on the left and right image planes,

which is consistent with known results [9]. Finally, the
error function becomes

E = d2(Lx,HRx̂)+d2(Rx,Rx̂) (15)

where H= LP[CRΩ>− (C>
RΩ)I]RP+. The reconstruc-

tion problem can now be formulated as an uncon-
strained optimization of equation (15) with respect to
Rx̂. The validation problem is solved by finding the
pair of candidates on each scanline with the minimum
squared errorE, and the optimal reconstruction̂X is re-
covered from equation (13) and the ideal projectionRx̂.

3.3 Special Case: Rectilinear Stereo and
Pin-Hole Cameras

The results of the previous section apply to general
camera models and stereo geometry. However, the spe-
cial case of rectilinear stereo and pin-hole cameras is
important as it reduces equation (15) to a single de-
gree of freedom. Furthermore, rectilinear stereo ap-
plies without loss of generality (after projective rectifi-
cation), and the pin-hole model is a good approximation
for CCD cameras (after correcting for radial lens distor-
tion). The stereo cameras used in this work are assumed
to have unit aspect ratio and no skew, and the pin-hole
models are parameterized by identical focal lengthf .
For rectilinear stereo cameras with optical centres at
CL,R = (∓b,0,0,1)>, the projection matricesL,RP are
given by

L,RP=

 f 0 0 ± f b
0 f 0 0
0 0 1 0

 (16)

where the positive sign is taken forL and the nega-
tive for R. Now, substituting equation (16) andCL,R =
(∓b,0,0,1)> into equation (14), the homography be-
tween the projections of a point on the laser plane can
be expressed as:

Lx̂ =

 Ab−D 2Bb 2Cb f
0 −(Ab+D) 0
0 0 −(Ab+D)

Rx̂

(17)
With Rx̂ = (Rx̂,R ŷ,1)T andLx̂ = (Lx̂,L ŷ,w)T, the above
transformation can be evaluated as Lx̂

Lŷ
w

=

 (Ab−D)Rx̂+2BbRŷ+2Cb f
−(Ab+D)Rŷ
−(Ab+D)

 (18)
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Expressed in inhomogeneous coordinates, the relation-
ship betweenLx̂ andRx̂ is

Lx̂ = − (Ab−D)Rx̂+2BbRŷ+2Cb f
Ab+D

(19)

Lŷ = Rŷ (20)

Since the axes ofL and R are parallel (rectilinear
stereo), the notation ˆy , Lŷ = Rŷ replaces equation
(20). Rectilinear stereo gives rise to epipolar lines
that are parallel to thex-axis, so the validation algo-
rithm need only consider possible correspondences on
matching scanlines in the stereo images. Any mea-
surement error in the stripe detection process (see Sec-
tion 5.1) is assumed to be in thex-direction only, while
the y-coordinate is fixed by the height of the scanline.
Thus, they-coordinate of the optimal projections are
also fixed by the scanline, ie. ˆy = y, wherey is they-
coordinate of the candidate measurementsLx andRx.

Finally, substituting equations (19)-(20) with ˆy = y
into (15), the image plane errorE can be expressed as a
function of asingleunknown,Rx̂:

E = (Lx+α
Rx̂+βy+ γ f )2 +(Rx−Rx̂)2 (21)

where the following change of variables in the plane
parameters is introduced (noting thatΩ has only three
degrees of freedom due to the unconstrained scale):

α = (Ab−D)/(Ab+D) (22)

β = 2Bb/(Ab+D) (23)

γ = 2Cb/(Ab+D) (24)

For the experimental scanner, withΩ given by equation
(5), α, β andγ can be written as:

α = −
k1cosθy +k2sinθy +k3

cosθy +k2sinθy +k3
(25)

β =
(1−k1)(θx sinθy +θzcosθy +B0)

cosθy +k2sinθy +k3
(26)

γ =
(k1−1)sinθy

cosθy +k2sinθy +k3
(27)

whereθy = me+ c and the following change of vari-
ables is made in the system parameters:

k1 = −(b+X0)/(b−X0) (28)

k2 = Z0/(b−X0) (29)

k3 = D0/(b−X0) (30)

Optimization of equation (21) now proceeds using
standard techniques, settingdE

dRx̂
= 0 and solving for

Rx̂. Let Rx̂∗ represent the optimal projection resulting
in the minimum squared error,E∗. It is straightforward
to show that the optimal projection is given by

Rx̂∗ = [Rx−α(Lx+βy+ γ f )]/(α2 +1) (31)

and the corresponding minimum squared errorE∗ is:

E∗ = (Lx+α
Rx+βy+ γ f )2/(α2 +1) (32)

For completion, substituting equation (31) andRŷ∗ = y
into (19) gives the corresponding optimal projection on
the left image plane as

Lx̂∗ = [α2Lx−α
Rx− (βy+ γ f )]/(α2 +1) (33)

Finally, the optimal 3D reconstruction̂X∗ is recovered
from equation (13). Evaluating (13) for rectilinear, pin-
hole cameras with the change of variables in equations
(22)-(24), and expressing the result in inhomogeneous
coordinates, the relationship betweenX̂∗ and the opti-
mal projectionRx̂∗ is:

 X̂∗

Ŷ∗

Ẑ∗

=


b[βy+γ f+(α−1)Rx̂∗]
(α+1)Rx̂∗+βy+γ f

−2by
(α+1)Rx̂∗+βy+γ f

−2b f
(α+1)Rx̂∗+βy+γ f

 (34)

Finally, substitutingRx̂∗ from equation (33) into the
above, the optimal reconstruction from candidate mea-
surementsLx andRx on the scanline at heighty is:

 X̂∗

Ŷ∗

Ẑ∗

=


[(α−1)(αLx−Rx)−(α+1)(βy+γ f )]b
(α+1)(αLx−Rx)+(α−1)(βy+γ f )

2by(α2+1)
(α+1)(αLx−Rx)+(α−1)(βy+γ f )

2b f(α2+1)
(α+1)(αLx−Rx)+(α−1)(βy+γ f )

 (35)

Now, let Lxi , i = 1. . .nL, andRx j , j = 1. . .nR rep-
resent candidate measurements of the stripe on corre-
sponding scanlines at heighty. Furthermore, lete rep-
resent the current measured encoder value for the scan-
ner (see Section 3.4). The validation problem, that is,
determining which pair of measurements correspond to
the primary reflection, can now be solved as follows:

1. Light plane parametersα, β andγ are calculated
from e and the system parameters using equations
(25)-(27) and (2).
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2. For every possible pair of measurements(Lxi ,
Rx j),

the optimal reconstruction errorE∗ is calculated
from equation (32). Then, the pair(Lx∗i ,

Rx∗j ) with
the minimal reconstruction error are chosen as the
most likely valid measurements, given by:

(Lx∗i ,
Rx∗j ) = arg min

(Lxi ,Rx j )
E∗(Lxi ,

Rx j ,α,β ,γ) (36)

3. A final test, E∗(Lx∗i ,
Rx∗j ,α,β ,γ) < Eth, ensures

that the optimal candidates are valid, whereEth is
calculated off-line from the expected measurement
error. If this test is violated, no reconstruction is
recovered in current frame.

4. For valid measurements, the optimal reconstruc-
tion X̂∗(Lx∗i ,

Rx∗j ) is finally calculated from equa-
tion (35). The reconstructions from all scanlines
in the current frame are added to the range map.

3.4 Laser Plane Error

The above solution is optimal with respect to the error
of image plane measurements, and assumes that the pa-
rameters of the laser plane are known exactly. In prac-
tice, the encoder measurements are likely to suffer from
both random and systematic error due to acquisition de-
lay and quantization. Unlike the image plane error, the
encoder error is constant for all stripe measurements in
a given frame and thus cannot be minimized indepen-
dently for candidate measurements on each scanline.

Let Lxi andRxi , i = 1. . .n represent valid correspond-
ing measurements of the laser stripe on then scanlines
in a frame. The reconstruction errorE∗

i (e) for each pair
can be treated as a function of the encoder count via the
system model in equations (25)-(27). The total error
E∗

tot(e) over all scanlines for a given encoder counte is
calculated as:

E∗
tot(e) =

n

∑
i=1

E∗
i (e) (37)

Finally, an optimal estimate of the encoder counte∗ is
calculated from the minimization

e∗ = argmin
e

[E∗
tot(e)] (38)

SinceE∗
tot(e) is a non-linear function, equation (38) is

implemented using the LM minimization from MIN-
PACK [17], with the measured value ofe as the initial
estimate.

As noted above, valid corresponding measurements
must be identified before calculatingE∗

tot(e). However,
since the correspondences are determined by minimiz-
ing E∗ over all candidate pairs given the plane parame-
ters, the correspondences are also a function of the en-
coder count. Thus, the refined estimatee∗ may relate
to a different set of optimal correspondences than those
from which it was calculated. To resolve this issue, the
optimal correspondences and encoder count are calcu-
lated recursively. In the first iteration, correspondences
are calculated using the measured encoder valuee to
yield the initial estimatee∗0 via equations (37)-(38). A
new set of correspondences are then extracted from the
raw measurements using the refined encoder valuee∗0.
If the new correspondences differ from the previous it-
eration, an updated estimate of the encoder valuee∗1 is
calculated (usinge∗0 as the initial guess). The process is
repeated until a stable set of correspondences is found.

The above process is applied to each captured frame,
and the optimal encoder counte∗ and valid correspond-
ing measurements are substituted into equation (35) to
finally recover the optimal 3D profile of the laser.

3.5 Additional Constraints

As already described, robust stripe detection is based
on minimization of the image plane error in equation
(32). However, the minimum image plane error is a
necessary but insufficient condition for identifying valid
stereo measurements. In the practical implementation,
two additional constraints are employed to improve the
robustness of stripe detection.

The first constraint simply requires stripe candidates
to be moving features; a valid measurement must not
appear at the same position in previous frames. This is
implemented by processing only those pixels with suf-
ficiently large intensity difference between successive
frames. While this constraint successfully rejects static
stripe-like edges or textures in most scenes, it has lit-
tle effect on cross-talk or reflections, since these also
appear as moving features.

The second constraint is based on the fact that valid
measurements only occur within a sub-region of the im-
age plane, depending on the angle of the light plane.
From equation (34), the inhomogeneousz-coordinate of
a optimal reconstruction̂X can be expressed as a func-
tion of the image plane projectionRx̂ = (Rx̂,y)> as

Ẑ =
−2b f

(α +1)Rx̂+βy+ γ f
(39)
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Rearranging the above, the projectedx-coordinate of a
point on the light plane may be expressed as a function
of depthẐ and the heighty of the scanline:

Rx̂ =−βy+ γ f
α +1

− 2b f

Ẑ(α +1)
(40)

The extreme boundaries for valid measurements can
now be found by taking the limit of equation (40) for
points on the light plane near and far from the camera.
Taking the limit for distant reflections gives:

lim
Ẑ→∞

Rx̂ =−βy+ γ f
α +1

(41)

Taking the limit Ẑ → 0 for close reflections gives the
other boundary atRx̂ → −∞. Now, if w is the width
of the captured image, valid measurements on the right
image plane at heighty must be constrained to thex-
coordinate ranges

−w
2

< Rx < −βv+ γ f
α +1

(42)

Following a similar development, it is straightforward
to show that the limits of valid measurements on the
left image plane are:

−βv+ γ f
α +1

< Lx < +
w
2

(43)

Stripe extraction is only applied to pixels within the
boundaries defined in (43)-(42); pixels outside these
ranges are immediately classified as invalid. In addition
to improving robustness, sub-region processing also re-
duces computational expense by halving the quantity
of raw image data and decreasing the number of stripe
candidates tested for correspondence.

4 Active Calibration

In this section, determination of the unknown parame-
ters in the model of the light stripe scanner are consid-
ered. Let the unknown parameters be represented by the
vector

p = (k1,k2,k3,θx,θz,B0,m,c)

wherek1, k2 andk3 were introduced in equations (28)-
(30). Since most of the parameters relate to mechani-
cal properties, the straightforward approach to calibra-
tion is manual measurement. However, such an ap-
proach would be both difficult and increasingly inac-
curate as parameters vary through mechanical wear. To

overcome this problem, a strategy is now proposed to
optimally estimatep using only image-based measure-
ments of a non-planar but otherwise arbitrary surface
with favourable reflectance properties (the requirement
of non-planarity is discussed below). This allows cali-
bration to be performed cheaply and during normal op-
eration.

The calibration procedure begins by scanning the
stripe across the target and recording the encoder and
image plane measurements for each captured frame.
Since the system parameters are initially unknown, the
validation problem is approximated by recording only
the brightest pair of features per scanline. LetLxi j and
Rxi j , i = 1. . .n j , j = 1. . . t represent the centroids of
the brightest corresponding features onn j scanlines of
t captured frames, and letej represent the measured en-
coder value for each frame. As described earlier, im-
age plane measurements have independent errors, while
the encoder error couples all measurements in a given
frame. Thus, optimal system parameters are determined
from iterative minimization of the stripe measurement
and encoder errors, based on the algorithm first de-
scribed in Section 3.4. First, the total image plane error
E∗

tot is summed over all frames:

E∗
tot =

t

∑
j=1

n j

∑
i=1

E∗(Lxi j ,
Rxi j ,ej ,p) (44)

whereE∗ is defined in equation (32). The requirement
of a non-planar calibration target can now be justified.
For a planar target, the stripe appears as a straight line
and the image plane measurements obey a linear rela-
tionship of the formxi j = a jyi j + b j . Then, the total
errorE∗

tot reduces to the form

E∗
tot =

t

∑
j=1

n j

∑
i=1

(A jyi j +B j)2 (45)

Clearly, the sign ofA j and B j cannot be determined
from equation (45), since the total error remains un-
changed after substituting−A j and−B j . The geomet-
rical interpretation of this result is illustrated in Figure
5, which shows the 2D analogue of a planar target scan.
For any set of encoder valuesej and collinear points
X j measured overt captured frames, there exist two
symmetrically opposed laser plane generators capable
of producing identical results. This ambiguity can be
overcome by constraining the calibration target to be
non-planar. It may also be possible for certain non-
planar targets to produce ambiguous results, but the cur-
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Figure 5: Possible positions of the light plane from the
scan of a planar calibration target. The position of the
light plane generator is ambiguous.

rent implementation assumes that such an object will
rarely be encountered.

An initial estimatep∗0 of the parameter vector is given
by the minimization

p∗0 = argmin
p

[E∗
tot(p)] (46)

using the measured encoder valuesej and stereo cor-
respondencesLxi j and Rxi j . Again, equation (46) is
implemented numerically using LM minimization in
MINPACK. The stripe measurementsLxi j andRxi j are
likely to contain gross errors resulting from the initial
coarse validation constraint (in the absence of known
system parameters). Thus, the next calibration step re-
fines the measurements by applying out-lier rejection.
Using ej and the initial estimatep∗0, the image plane
errorE∗(Lxi j ,

Rxi j ,ej ,p∗0) in equation (32) is calculated
for each stereo pair. The measurements are then sorted
in order of increasing error, and the top 20% are dis-
carded.

The system parameters and encoder values are then
sequentially refined in an iterative process. The initial
estimatep∗0 is only optimal with respect to image plane
error, assuming exact encoder valuesej . To account
for encoder error, the encoder value is refined for each
frame using the method described in Section 3.4 with
the initial estimatep∗0 of the system model. The result-
ing encoder estimatese∗j,0 are optimal with respect to
p∗0. A refined system modelp∗1 is then obtained from
equation (46) using the latest encoder estimatese∗j,0 and

in-lier image plane measurements. At thekth iteration,
the model is considered to have converged when the
fractional change in total errorE∗

tot is less then a thresh-
old δ :

E∗
tot,k−1−E∗

tot,k

E∗
tot,k−1

< δ (47)

The final parameter vectorp∗k is stored as the near-
optimal system model for processing regular scans us-
ing the methods described in Section 3. A final check
for global optimality is performed by comparing the
minimum total errorE∗

tot,k to a fixed threshold, based
on an estimate of the image plane error. The rare case
of non-convergence (less than 10% of trials) is typically
due to excessive out-liers introduced by the sub-optimal
maximum intensity validation constraint applied to the
initial measurements. Non-convergence is resolved by
repeating the calibration process with a new set of data.

The calibration technique presented here is practi-
cal, fast and accurate, requiring only a single scan of
any suitable non-planar scene. Furthermore, the method
does not rely on measurement or estimation of any met-
ric quantities, and so does not require accurate knowl-
edge of camera parametersb and f . Thus, image-based
calibration allows the validation and correspondence
problems to be solved robustly and independently of re-
construction accuracy.

5 Implementation

This section describes the signal processing used to im-
plement stereoscopic light stripe scanning on the exper-
imental system introduced in Section 2. The output of
the scanner is a 384× 288 element range map, with
each element recording the 3D position of the surface
as viewed from the right camera. During normal oper-
ation, the laser is scanned across a scene and the shaft
encoder and stereo images are recorded at regular 40 ms
intervals (25 Hz PAL frame-rate). The laser is mechan-
ically geared to scan at about one pixels of horizontal
motion per captured frame, so a complete scan requires
approximately 384 processed frames (15 seconds).

5.1 Light Stripe Measurement

Laser stripe extraction is performed using intensity data
only, which is calculated by taking the average of the
colour channels. As noted in Section 3.5, the motion
of the stripe distinguishes it from the static background,
which is eliminated by subtracting the intensity values
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Figure 6: Thresholds for robust extraction of multi-
modal pulses.

in consecutive frames and applying a minimum differ-
ence threshold. The resultingdifference imageis mor-
phologically eroded and dilated to reduce noise and
improve the likelihood of stripe detection. In Section
3.5 it was also shown that valid measurements occur
in a predictable sub-region of the image. This is cal-
culated from equations (43)-(42) and the measured en-
coder value, and pixels outside this region are set to zero
in the difference image. Further processing is only ap-
plied to pixels with non-zero difference.

The intensity profile on each scanline is then exam-
ined to locate candidate stripe measurements. If the
stripe appeared as a simple unimodal pulse, the local
maxima would be sufficient to detect candidates. How-
ever, mechanisms including sensor noise, surface tex-
ture and saturation of the CCD interfere and perturb the
intensity profile. These issues are overcome by extract-
ing pulses using a more sophisticated strategy of inten-
sity edge extraction and matching. On each scanline,
left and right edges are identified as an increase or de-
crease in the intensity profile according to the thresh-
olds defined in Figure 6. Processing pixels from left to
right, the location of a left edgexl is detected when the
intensity difference between successive pixels exceeds
a thresholdδe, and the closest local intensity maxima
to the right ofxl exceeds the intensity atxl by a larger
thresholdδh. Right edgesxr are extracted by process-
ing the scanline in reverse. Finally, the edges are ex-
amined to identify left/right pairs without intervening
edges. Whenxl andxr are closer than a threshold dis-
tanceδw, the pair are assumed to delimit a candidate
pulse. The pulse centroid is calculated to sub-pixel ac-
curacy as the mean pixel position weighted by the in-

tensity profile within these bounds.
The result of the above process is a set of candidate

stripe locations on each scanline of the stereo images.
Along with the measured encoder value, these candi-
dates are analyzed using the techniques described in
Section 3 to refine the laser plane angle, identify valid
corresponding measurements and reconstruct an opti-
mal 3D profile. The reconstruction on each scanline
is stored in the range map at the location of the corre-
sponding measurement in the right image.

5.2 Range Data Postprocessing

Post-processing is appliedafter each complete scan to
further refine the measured data. Despite robust scan-
ning, the raw range map may still contain outliers as
the stripe validation conditions are occasionally satis-
fied by spurious noise. Fortunately, the sparseness of
the outliers make them easy to detect and remove using
a simple thresholding operation: the minimum distance
between each 3D point and its eight neighbours is cal-
culated, and when this exceeds a threshold (10 mm in
the current implementation), the associated point is re-
moved from the range map.

Holes (pixels for which range data could not be re-
covered) may occur in the range map due to specu-
lar reflections, poor surface reflectivity, random noise
and outlier removal. A further post-processing step fills
these gaps with interpolated depth data. Each empty
pixel is checked to determine whether it is bracketed by
valid data within a vertical or horizontal distance of two
pixels. To avoid interpolating across depth discontinu-
ities, the distance between the bracketing points must be
less than a fixed threshold (30 mm in the current imple-
mentation). Empty pixels satisfying these constraints
are assigned a depth linearly interpolated between the
valid bracketing points. The effect of both outlier rejec-
tion and interpolation on a raw scan is demonstrated in
Figure 7.

Finally, a colour image is registered with the range
map. Since robust scanning allows the sensor to oper-
ate in normal light, the cameras used for stripe detection
also capture colour information. However, depth and
colour cannot be sampled simultaneously for any given
pixel, since the laser masks the colour of the surface.
Instead, a complete range map is captured before regis-
tering a colour image from the right camera (assuming
the cameras have not moved). Each pixel in this final
image yields the colour of the point measured in the
corresponding element of the range map.
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(a) Before post-processing

(b) After post-processing

Figure 7: Removal of impulse noise and holes (elimi-
nated features are circled on the left).

6 Experimental Results

6.1 Robustness

To evaluate the performance of the proposed robust ac-
tive sensing method, the scanner is implemented along
with two other common techniques on the same exper-
imental platform. The first method is a simple single-
camera scanner without any optimal or robust proper-
ties. A single-camera reconstruction is calculated from
equation (13), using image plane measurements from
the right camera only. Since no validation is possi-
ble in this configuration, the stripe is simply detected
as the brightest feature on each scanline. The sec-
ond alternative implementation will be referred to as a
double-camerascanner. This approach is based on the
robust techniques proposed in [18, 27], which exploit
the requirement of consensus between two independent

single-camera reconstructions. The single-camera re-
constructionŝXL and X̂R are calculated independently
from measurements on the left and right image planes,
and discarded when|X̂L− X̂R| exceeds a fixed distance
threshold. For valid measurements, the final reconstruc-
tion is calculated as12(X̂L + X̂R).

The performance of the three methods in the presence
of a phantom stripe (secondary reflection) was assessed
using the test scene shown in Figure 8. A mirror at the
rear of the scene creates a reflection of the objects and
scanning laser, simulating the effect of cross-talk and
secondary reflections. To facilitate a fair comparison,
the three methods operated simultaneously on the same
raw measurements captured during a single scan of the
scene.

Figure 9(a) shows the colour/range data captured by
the single-camera scanner. As a result of erroneous as-
sociations between the phantom stripe and laser plane,
numerous phantom surfaces appear in the scan without
any physical counterpart. Figure 9(b) shows the output
of the double-camera scanner, which successfully re-
moves the spurious surfaces. However, portions of real
surfaces have also been rejected, since the algorithm is
unable to disambiguate the phantom stripe from the pri-
mary reflection when both appear in the scene. Finally,
Figure 9(c) shows the result using the techniques pre-
sented in this paper (see also Extension 1). The por-
tions of the scene missing from Figure 9(b) are suc-
cessfully detected using the proposed robust scanner,
while the phantom stripe has been completely rejected.
Also noteworthy is the implicitly accurate registration
of colour and range.

The single-camera result highlights the need for ro-
bust methods when using light stripe scanners on a do-
mestic robot. While the double-camera scanner suc-
cessfully rejects reflections and cross-talk, the high re-
jection rate for genuine measurements may cause prob-
lems for segmentation or other subsequent processing.
In contrast, segmentation and object classification have
been successfully applied to the colour/range data from
the proposed robust scanner to facilitate high-level do-
mestic tasks [25]. Extensions 2 and 3 provide addi-
tional colour/range maps of typical domestic objects to
demonstrate the robustness of our sensor in this appli-
cation.

6.2 Error Analysis

The results in this section experimentally validate of the
system and noise models used to derive the theoreti-
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Figure 8: Robust scanning experiment.

cal results. In particular, the encoder angle estimation
and calibration techniques described in Sections 3.4 and
4 are shown to be sufficiently accurate that any uncer-
tainty in the system parameters and encoder values can
be ignored for the purposes of optimal validation and
reconstruction.

First, the calibration procedure described in Section
4 was performed using the corner formed by two boxes
as the calibration target, and the valid image plane
measurements and encoder values for each frame were
recorded. Using the estimated system parameters, the
optimal projectionsL,Rx̂∗ and residuals(L,Rx− L,Rx̂∗)
were calculated from equations (31) and (33) for all
measurements. Figure 10 shows the histogram of resid-
uals for measurements on the right image plane, and
a Gaussian distribution with the same parameters for
comparison. The residuals are approximately Gaussian
distributed as expected, and assuming the light stripe
measurement errors are similarly distributed, the error
model proposed in Section 3.1 is found to be valid. The
variance of the image plane measurements are shown in
the first two rows of Table 1.

The variance of the system parameters and encoder
values were determined using statistical bootstrapping.
In this process, the residuals were randomly and uni-
formly sampled (with replacement) from the initial
data, and added to the optimal projectionsL,Rx̂∗ to gen-
erate a new set of pseudo-measurements. The system
parameters were then estimated for each new set of
pseudo-measurements using the calibration process de-
scribed in Section 4. A total of 5000 re-sampling ex-
periments were performed, and the resulting variance in
the estimated system parameters are shown in the third

(a) Single-camera

(b) Double-camera

(c) Robust scanner

Figure 9: Comparison of range scanner results in the
presence of secondary reflections.
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Table 1: System parameter errors and contribution to
reconstruction error.

pi p̄i var(pi) var(Rx̂∗)i

xL 59.2 8×10−3 2×10−3

xR -47.4 7×10−3 2×10−3

y 6.0 0.0 0.0
e 451.5 5×10−5 2×10−5

k1 -1.1033 2×10−8 1×10−5

k2 0.1696 4×10−8 2×10−8

k3 0.0717 1×10−8 2×10−5

θx -0.0287 3×10−10 2×10−12

θz 0.0094 5×10−8 2×10−6

B0 -0.0004 5×10−8 2×10−6

m 0.001105 7×10−16 3×10−5

c -0.4849 1×10−10 4×10−5

column of Table 1.
Finally, the optimality of the reconstruction is as-

sessed by calculating the contribution from each pa-
rameter to the variance of the optimal projectionRx̂∗

in equation (31). Representing the components of the
parameter vector asp = {pi}, and assuming the param-
eters have independent noise, the contribution of param-
eterpi (with all other parameters fixed) to the variance
of Rx̂∗, represented as var(Rx̂∗)i , is calculated as

var(Rx̂∗)i =

(
∂ Rx̂∗

∂ pi

∣∣∣∣
p

)2

·var(pi) (48)

The independence of the parameters is readily verified

from the covariance matrix ofp.
Choosing a test point near the centre of the image

plane, the contribution of each parameter to the total
variance was calculated from equation (48) and the re-
sults are shown in the far right column of Table 1. Im-
portantly, the errors due toRx andLx are two orders of
magnitude greater than the contribution from the sys-
tem parameters and encoder value. For comparison, the
variance inRx̂∗ measured from the bootstrapping pro-
cess was 0.0035 pixels2, which agrees well with the
sum of contributions fromLx andRx. Finally, it should
be noted that the variance ofRx̂∗ is about half the vari-
ance ofRx, indicating that the optimal reconstruction
has a higher precision than a single-camera reconstruc-
tion.

These results demonstrate the reliability of the
image-based techniques presented in Sections 3.4 and
4 for estimating the encoder value and calibrating the
system parameters in the presence of noisy measure-
ments. Furthermore, the main assumptions in deriving
equations (31) and (32) are now justified: any uncer-
tainty in the system parameters and encoder value can
be reasonably ignored for the purpose of validation and
reconstruction.

7 Discussion

In addition to providing a mechanism for validation, the
error distanceE∗ in equation (32) could be used to mea-
sure the random error of range points. As discussed in
Section 3.1, the error variance of a 3D reconstruction
increases with depth as the reconstruction problem be-
comes ill-conditioned. This systematic uncertainty can
be calculated directly from the reconstruction in equa-
tion (35). In contrast,E∗ measures the random uncer-
tainty due to sensor noise. A suitable function of these
systematic and random components could be formu-
lated to provide a unique confidence interval for each
3D point, which would be useful in subsequent process-
ing. For example, parametric surface fitting could be
optimized with respect to measurement error by weight-
ing each point with the confidence value.

One of the main limitations of light stripe scanning
(compared to methods such as passive stereo) is the ac-
quisition rate. In the current implementation, the PAL
frame-rate of 25 Hz results in a 15 second measurement
cycle to capture a complete half-PAL resolution range
map of 384 stripe profiles. Clearly, such a long acqui-
sition time renders the sensor unsuitable for dynamic
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scenes. However, a more subtle issue is that the robot
must remain stationary during a scan to ensure accurate
registration of the measured profiles. Obviously, the ac-
quisition rate could be improved using high-speed cam-
eras and dedicated image processing hardware; high-
speed CMOS cameras are now capable of frame-rates
exceeding 1000 Hz. Assuming the image processing
could be accelerated to match this speed, the sensor
could be capable of acquiring 2-3 range maps per sec-
ond. An example of a high-speed monocular light stripe
sensor using a “smart” retina is described in [8].

To minimize complexity and cost, the experimental
prototype uses a red laser diode to generate the light
plane. Consequently, the scanner only senses surfaces
which contain a high component of red. Black, blue
and green surfaces reflect insufficient red laser light
and are effectively invisible to the sensor. Since the
light plane is not required to be coherent or monochro-
matic, the laser diode could be replaced by a white light
source such as a collimated incandescent bulb. How-
ever, laser diodes have particular design advantages in-
cluding physical compactness, low power consumption
and heat generation, and are thus more desirable than
other light sources. To solve the colour deficiency prob-
lem while retaining these advantages, the light plane
could be generated using a triplet of red, green and blue
laser diodes. Currently, the main obstacle to this ap-
proach is the high cost of green and blue laser diodes.

As with colour, surfaces with high specular and low
Lambertian reflection may appear invisible, since insuf-
ficient light is reflected back to the sensor. This lim-
itation is common to all active light sensors and can
also defeat passive stereopsis, since the surface appears
differently to each viewpoint. To illustrate this effect,
Figure 11 shows the raw image and resulting scan of a
highly polished object. The only visible regions appear-
ing in the range map are the high curvature edges that
provide a specular reflection directly back to the sensor.
The best that can be achieved is to ensure that secondary
reflections do not interfere with range data acquisition,
as demonstrated in this result.

8 Summary and Conclusions

We have presented the theoretical framework and im-
plementation of a robust light stripe scanner for a do-
mestic robot, capable of measuring arbitrary scenes in
ambient indoor light. The scanner uses the light plane
orientation and stereo camera measurements to robustly

Figure 11: Scan of a highly polished object. The light
stripe (with specular reflections) is shown on the left,
and the resulting range map is shown on the right.

identify the light stripe in the presence of secondary re-
flections, cross-talk and other sources of interference.
The validation and reconstruction framework is based
on minimization of error distances measured on the im-
age plane. Unlike previous stereo scanners, this formu-
lation is optimal with respect to measurement error. An
image-based procedure for calibrating the light plane
parameters from the scan of an arbitrary non-planar tar-
get is also demonstrated.

Results from the experimental scanner demonstrate
that our robust method is more effective at recovering
range data in the presence of reflections and cross-talk
than comparable light stripe methods. Experimental re-
sults also confirm the assumptions of our noise model,
and show that image-based calibration produces reli-
able results in the presence of noisy image plane mea-
surements. Finally, the optimal reconstructions from
our proposed scanner are shown to be more precise than
the reconstructions from a single-camera scanner.

The ability to solve the stripe association problem
may provide interesting future research in the develop-
ment of a multi-stripe scanner. Multi-stripe scanners
have the potential to solve a number of issues asso-
ciated with single-stripe scanners: illuminating a tar-
get with two stripes could double the acquisition rate,
and projecting the stripes from different positions re-
veals points that would otherwise be hidden in shadow.
Single-camera multi-stripe systems rely on colour [23],
sequences of illumination [15] or epipolar constraints
[14] to disambiguate the stripes. However, the method
proposed in this paper could allow the stripes to be
uniquely identified using the same principles that pro-
vide validation for a single stripe.

Finally, the over-arching goal in this development is

15



to allow a robot to model and manipulate arbitrary ob-
jects in a domestic environment. Our other results in
this area [25] already demonstrate that the scanner pro-
vides sufficiently robust measurements to achieve this
goal.
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Appendix: Index to Multi-Media
Extensions

The mult-imedia extensions to this article can be
found online by following the hyperlinks from
www.ijrr.org. These results may also be found at
www.irrc.monash.edu.au/laserscans.

Extension Media type Description
1 Data VRML 97 model (half

scanner resolution) of
mirror scene, (requires
VRML plug-in).

2 Data VRML 97 model (half
scanner resolution) of
typical domestic objects.

3 Data VRML 97 model (half
scanner resolution) of
typical domestic objects.
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