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Abstract ing a known feature onto the measured surface, active
scanners provide a more robust solution to the measure-
This paper addresses the problem of rejecting interfement problem than passive ranging techniques. A re-
ence due to secondary specular reflections, cross-takv of light stripe scanning and related range sensing
and other mechanisms in an active light stripe scannechniques can be found in [13, 4, 5]. Range sensing is
for robotic applications. Conventional scanning metlan important component of many robotic applications,
ods control the environment to ensure the brightnessasfd light stripe ranging has been applied to a variety
the stripe exceeds that of all other features. Howevef tasks including navigation [19, 2], obstacle detection
for a robot operating in an uncontrolled environmenfl 2], object recognition for grasping [3, 21], and visual
valid measurements are likely to be hidden amongsdrvoing [7].
noise. Robust scanning methods already exist, but sufThe drawback of conventional single-camera light
fer from problems including assumed scene structuggripe ranging techniques is that favourable lighting
acquisition delay, lack of error recovery, and incorregbnditions and surface reflectance properties are re-
modelling of measurement noise. We propose a rguired, which allow the stripe to be identified as the
bust technique that overcomes these problems, ushiyhtest feature in the captured image. However, the
two cameras and knowledge of the light plane orierange sensor presented in this paper is intended for use
tation to disambiguate the primary reflection from spwn a humanoid robot operating in an uncontrolled do-
rious measurements. Unlike other robust techniquesestic environment [24, 25]. Under these conditions,
our validation and reconstruction algorithms are optkarious noise mechanisms interfere with the sensor to
mal with respect to sensor noise. Furthermore, we piefeat conventional stripe detection techniques: smooth
pose an image-based procedure to calibrate the systgnfaces cause secondary reflections, edges and textures
using measurements of an arbitrary non-planar targefay have a stripe-like appearance, and cross-talk can
providing robust validation independently of rangingrise when multiple robots scan the same environment.
accuracy. Finally, our robust techniques allow the seThe motivation for this work was to develop a robust
sor to operate in ambient indoor light, allowing colouight stripe sensor suitable for operation in these noisy
and range to be implicitly registered. An experimentgbnditions.
scanner demonstrates the effectiveness of the proposesl number of techniques for improving the robust-
techniques. ness of light stripe scanners have been proposed in other
work, using both stereo and single-camera configura-
. tions. Mageeet al.[16] develop a scanner for industrial
1 Introduction inspection using stereo measurements of a single stripe.
Spurious reflections are eliminated by combining stereo
Light stripe ranging is an active, triangulation-baseelds via a minimum intensity operation. This tech-
technique for non-contact surface measurement that hagie depends heavily on user intervention angkri-
been studied for several decades [22, 1]. By projecti knowledge of the scanned target. Truatal. [27]
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also use stereo cameras to measure a laser stripe, ar N\

. . i J
treat the system as two independent single-camera ser ~ 1aser diode \; S

Sors. Robustness is achlevgd by imposing a numbe! g;w L position
of consistency checks to validate the range data, the : A - J-« encoder
most significant of which requires independent single- 3 =
camera reconstructions to agree within a threshold dis-
tance. Another constraint requires valid scanlines to
contain only a single stripe candidate, but a method for
error recovery in the case of multiple candidates is not right
proposed. Thus, secondary reflections cause both thiCamera
true and noisy measurements to be rejected.

Nakanoet al.[18] develop a similar method to reject
false data by requiring consensus between independer
scanners, but using two laser stripes and only a single
camera. In addition to robust ranging, this configuratidrigure 1: Experimental stereoscopic light stripe scanner
provides direct measurement of the surface normal. The
disadvantage of this approach is that each image only
recovers a single range point at the intersection of

left
camera

. LS N e to%es greater precision than a single-camera configu-
two stripes, resulting in a significant acquisition de"”‘?‘é\tion, as demonstrated experimentally. Furthermore,

for(;?he comglette Image. techni h b we develop an image-based calibration procedure using
Er robust scanning techniques have been PLog.,, of 4 non-planar but otherwise arbitrary surface.
posed using single-camera, single-stripe configuratio

: . Br calibration procedure provides robust validation in-
Nygards and Wernersson [20] identify specular r(afle&'ependently of ranging accuracy. Finally, the ability of

tions by moving the scanner relative to the scene and U sensor to operate in ambient indoor light allows sur-

alyzing the motion of reconstructed range data. In [l% ce colour and range to be captured in the same cam-

periodic intensity modulation distinguishes the StrpS s Since the intended application is to support object

from random noise. Both of these methods reqUif’rre?odelling and tracking [24], this implicit registration

data to be associated betweep mulyple Image, Wh'crb'rscolour and range is highly desirable. The system de-
prone to error. Furthermore, intensity modulation do

. . . ) &2ribed in this work was first proposed in [26], and is
not disambiguate secondary reflections, which vary &tended here by providing a more rigorous treatment
unison with the true stripe. Alternatively, Clagkal.[6]

i | larized liaht to reiect d ﬂ with respect to measurement noise.
use linearly polanzed ight to reject seconcary retiec- following Section briefly describes the hardware

tions from metallic surfaces, based on the observati Qnﬁguration of our stereo stripe scanner. Section 3
that polarized light changes phase with each spec R/elops the underlying framework for optimal noise

reflectlon.' Howevgr, the complicated acqwsmoq P'Qaiection and reconstruction. Image-based calibration
cess requires multiple measurements through dlf‘fel’% he system is described in Section 4. Implementa-

pogirll_zllngﬂl:llter;. bust techni th thod tion details are discussed in Section 5, and Section 6
nitke the above robust techniques, the Metho pr|5)r'esents experimental results to compare the perfor-
posed in this paper uniformly rejects interference due

. ﬁ?ance of our system with other stripe scanning tech-
secondary reflections, cross-talk, background featuhiﬁu es y P 9

and other noise mechanisms. The proposed algorit

solves the association problem to allow the true stripe to

be disambiguated from a set of noisy candidates. Thys, Overview

our method offers a significant improvement over pre-

vious teqhm_ques for error detectlo'n, by providing botﬁ_l Basic Operation
noise rejection andecoveryof valid measurements.
The depth data reconstructed by our stereo scanneFigure 1 shows the components of the experimental
optimal with respect to sensor noise (unlike the sterestereoscopic light stripe scanner, which is mounted on a
techniques in [18, 27]), and fuses stereo measuremepdas/tilt active head. A vertical light plane is generated

with the light plane parameters. Thus, our sensor ptay a laser diode module with a cylindrical lens, and is



and the homogeneous transformation mats trans-

light plane . B B A
axis of v forms points from framé\ to frameB as®X = "Ha"X.
“’tat"’gf)ey AP Figure 2 shows the relevant coordinate frames for the

/ - experimental scannek: andR denote the left and right
Tama%e camera framesR is rigidly attached to the light plane

andW is the world frame.

ight The cameras are modelled by the 8 projection ma-

plane trices-P andRP, which project points from the world

: frame onto the image planes according to the homoge-

left camera
frame plane

light plane -4 =
frame

camera
frame

: viewing direction neous transformatioh®x = LRPYX. The cameras are
o camera ahtimage arranged in a rectilinear stereo configuration (parallel
plane axes and coplanar image planes), with optical centres at

CLr = (¥b,0,0)" (taking the negative sign fdr and
Figure 2: Light stripe camera system model.  positive forR) in the world frame. In practice, the cam-

eras can verge about thieaxis (violating the conditions

of rectilinear stereo) but rectilinear measurements are

] recovered by applyingrojective rectificationto cap-
scanned across a scene by rotating the laser about aNREd frames (see [10]). Thus, without loss of gener-

tical axis. The angle of rotation is measured by an opfijity the analytical models consider only the rectilinear
cal encoder connected to the output shaft via a toowﬁ’r‘f‘angement shown in Figure 2.

belt. PAL colour cameras capture stereo images of the
stripe at 384x 288 pixel (half-PAL) resolution.
Captured image are processed to extract all possiglg’ System Model

locations of the light stripe on each scanline. Scap-theoretical model of the experimental scanner is now
lines typically contain multiple candidates, with th@leveloped to identify points on the light plane. Since
true stripe (primary reflection) hidden amongst spuhe Jight plane is fixed irP, pointsPX on the plane
ous measurements. The true stripe is identified on eaﬁay be represented by the plane equafir PX = 0,
scanline by searching for the pair of stereo measuigherePQ represents the parameters of the light plane.
ments most likely corresponding to the projection of Row, P is defined such that the light plane is approxi-

3D point on the light plane, given the current encodgately vertical and parallel to theaxis, which allows
measurement. The validation process is detailed in SBgy to be expressed as

tion 3. Finally, the validated measurements are used to
reconstruct the 3D profile of the illuminated surface. PQ = (1, By, 0, Do) " Q)

As the stripe is scanned across the scene, the laser )
profiles are assembled into an array of 3D points, whi¥€r€Bo is related to the small angle between the plane
is referred to as aange map A colour image is cap- and they—aX|s.(Bo < 1 for an approximately vert|call
tured and registered with the range map at the compi@ne), ando is the distance of the plane from the ori-
tion of a scan. Captured frames are processed at Fl[l- During a scan, frame rotates about ity-axis with
frame-rate (25 Hz) on the 2.2 GHz dual Xeon host P@ndledy, where6y = 0 when the light plane is parallel
Motor control and optical encoder measurements dfethe optical axes of the cameras. The rotation axis in-

v
implemented on a PIC microcontroller, which commuérsects thezplane of the world frame &%o,0,2) ',
nicates with the host PC via an RS-232 serial link. and the orientation of the rotation axis relative to the

y-axis of the world frame is defined by the small fixed
] ] anglesfy and,. The scan anglef( in Figure 2) is lin-
2.2 Coordinate Frames and Notation early related to the measured optical encoder vaitia

: . . two additional parametera andk:
The following sections adopt the convention of repre- . P

senting 3D points in upper-case, suchXsand 3D 6, = me+k 2
points on the image plane using lower-case, suck as

with all vectors inhomogeneousoordinates. Coordi- Now let WHp represent the homogeneous coordi-
nate frames are specified in super-script, suchiXas nate transformation fron® to W. If Ry(6x), Ry(6y)



and R(6;) represent the homogeneous transforma-
tions for rotations about the, y and z-axes, and
T(Xo,0,Zp) represents the transformation for transla-
tion by (Xo,0,2Z0) ", WHp can be expressed as

' primary
- reflection

secondary _,
W reflection

Hp = T(X0,0,20) - Ry(62) - Ru(6x) -Ry(8y)  (3)
It is straightforward to show that WHp is the coordi-
nate transformation fror® to W, the plane parameters
transform fromP toW as »

WQ — (WHP)fT . PQ (4) Ly

Finally, combining equations (3) and (4) and makinﬁzgzage gg:;mage

the simplifying assumption8g, 6y,0; < 1 to elimi- .
nate insignificant terms, the laser plane parameters can .
be expressed in the world frame by the approximaté"
model:

light plane "% Cr
generator

costy Figure 3: Validation/reconstruction problem.
6 sinby + 6;cosby + Bg

—sinéy ©)
—Xocosty + Zosinby + Do than secondary reflections). The 3D reconstruction for
ing equations (2) and (5), points in the world frame cah IS recovered as the intersection of the light plane and

be identified as coincident with the light plane (giveft 2y back-projected through the image plane measure-

the system parameters and current encoder meas{}80tS. These points will be referred to as tiegle-
ment) using the plane equation: camera reconstructions As a result of noise on the

CCD (exaggerated in this example), the back-projected
QT (Bo, Do, X0, Zo, 6k, 8, 8,)VX =0 (6) rays do not intersect the physical reflections<aand
X'

The robust scanning problem may now be stated as
follows: given the laser plane position and the mea-
surement$x, Rx andRx’, one of the left/right candidate
pairs, £x,Rx) or (*x,Rx’), must be chosen as represent-
As discussed earlier, the problems associated with ligh@ stereo measurements of the primary reflection. Al-
stripe scanners result from ambiguity in identifying thi€rnatively, all candidates may be rejected. This task is
primary reflection. The following sections describe di¢ferred to as thealidation problemand a successful
optimal strategy to resolve this ambiguity and robustgplution in this example should identifyx,?x) as the
identify the stripe in the presence of secondary refleglid measurements. The measurements should then be
tions, cross-talk and other sources of noise by explogfembined to estimate the position of the ideal projection
ing redundancy. R (arbitrarily chosen to be on the right image plane) of

Figure 3 shows a simplified plan view of the scarihe actual poink.
ner to demonstrate the issues involved in robust stripg=ormulation of optimal validation/reconstruction al-
detection. The surface At causes a primary reflectiongorithms should take account of measurement noise,
that is measured (using a noisy proces$xand®x on which is not correctly modelled in previous related
the stereo image planes. However, a secondary specwark. In [27] and [18], laser stripe measurements are
reflection causes another stripe to appeaf awvhich is validated by applying dixed threshold to the differ-
measured on the right image planeiat but obscured ence between corresponding single-camera reconstruc-
from the left camera (in practice, such noisy measuriens (X, , Xg andXg in Figure 3). Such a comparison
ments are produced by a variety of mechanisms othiequires a uniform reconstruction error over all depths,

WQN

3 Robust Stripe Scanning

3.1 Problem Statement



(apart from the visual measurements and shaft en-
coder position) are assumed to be known with suf-
ficient accuracy that any uncertainty can be ig-

nored for the purpose of validation and reconstruc-
tion.

3.2 General Solution

We now present a general analytical solution to the vali-
dation/reconstruction problem. Lt andRx represent
noisy candidatemeasurements of the stripe on corre-
sponding epipolar lines, and I€&t = (A,B,C,D) " rep-
resent the parameters of the light plane. Thstof as-
sociating the measurements with the primary reflection
of the stripe can be formulated as an error distance on
light plane the image plane (simﬂar to the reconstruction method
generator C proposed in [11]). LeX represent the minimum mean
squared error 3D reconstruction, which is constrained to
Figure 4: Variation of single-camera reconstruction ecoincide with the laser plane, but not necessarily at the
ror with depth. intersection of the back-projected rays from the noisy
image plane measurements. Errors in the light plane
parameter$? are considered in the next section, but for
ow the light plane parameters are assumed to be known
exactly. The optimal reconstructiof corresponds to

) S r Lo R )
hibit a constant error variance on the image plane, as i€ |deaI| prOJect|onsa_x anA % o the left a?]d right
dicated by the intervaix. However, projectingx onto '™M29€ P a(;wes accto)r Ing )ri_'d P|X. yow,t e SL(’jm ,
the laser plane reveals that the reconstruction error?:H(-S‘quare errors etwe_ent eldealand measure points
creases with depth, siné&; < AX». Thus, the valida- can be used to determine whether the candidate mea-
tion threshold on depth difference should increase wigrement pain{ ) corresponds to a poirX on the
depth to account for measurement noise, otherwise \)
idation is more lenient for closer reconstructions. Sim- E = d?("x, '-P>A() +d?(Rx, RP)?) 7
iIarAIy, teﬂdng eitherXy, Xg or the arithmetic average ) ) )
(XL +Xg) as the final reconstruction is generally subvhered(xs,xz) is the Euclidean distance betwerp
optimal for noisy measurements. andxz. For a given candidate pair, the optimal recon-
The following sections present optimal solutions {piUCtionX with respect to image plane error is found
the validation/reconstruction problem, based on an &) & constrained minimization & W'Fh respect to the
ror model with the following features (the assumptiorR@ndition thaiX is on the laser plane:
of the error mpdel are corroborated with experimental 0O'X=0 (8)
results in Section 6.2):

image plane

which Figure 4 illustrates is clearly not the case. T
independent measurementsxatand x, generally ex-

ight plane:

When multiple ambiguous correspondences exist, equa-
1. Light stripe measurement errors are independe(n (7) is optimized with respect to the constraint in (8)
and Gaussian distributed with uniform variancgyr all possible candidate pairs, and the pair with mini-
over the entire image plane. mum error is chosen as the most likely correspondence.
inally, the result is validated by imposing a threshold
the maximum allowed squared image plane efror

the shaft encodere(in equation (2)), which cou- Performing the constrained optimization of equations

ples all the image plane measurements in a givgr?'(S) is analytically cumbersome. Fortunately, the
frame problem may be reduced to an unconstrained optimiza-

tion by formulating the ideal left projectidik as a func-
3. All other parameters described in Section 2ton of the ideal right projectio®x for points on the

2. The dominant error in the laser plane position E
the angular error about the axis of rotation due



light plane. To determine this relationship, the 3D ravhich is consistent with known results [9]. Finally, the
construction is first expressed as a function®&fby error function becomes

taking the intersection of the laser plane and the ray

back-projected fronk. Plicker matrices provide a E = d?("x, H?R) + d*("x,7%) (15)
concise notation for the intersection of planes and lines

(see [9]). IfA andB represent the homogeneous vectotéere H="P[CrQ2" — (Cx2)I]"P*. The reconstruc-

of two points on a line, the Btker matrix L describing tion problem can now be formulated as an uncon-
the line is strained optimization of equation (15) with respect to

L=ABT —BAT 9) RR. The validation problem is solved by finding the
pair of candidates on each scanline with the minimum
Then, the intersectioX of a planeQ2 and the line de- squared erroE, and the optimal reconstructiofiis re-
scribed by L is simply covered from equation (13) and the ideal projecftéin

X=LQ=(AB" -BAT)Q 10 : -
( ) (10) 3.3 Special Case: Rectilinear Stereo and

The Plicker matrix for the back-projected ray from Pin-Hole Cameras
R% can now be constructed from two known points

OPhe results of the previous section apply to general
the ray: the camera cent®, andRPR%, whereRPt is P PRy 10 g

) o camera models and stereo geometry. However, the spe-
the pseudo-lr?nveFre.f,e Othf‘ e camera projection maifix cial case of rectilinear stereo and pin-hole cameras is
such thaftP("P*R%) = 7%, given by important as it reduces equation (15) to a single de-
Rp+ _ RPT(RPRPT)’l (11) gree of_ freedom. Furthermore, rectilinrear_stereo_e_lp-
plies without loss of generality (after projective rectifi-
cation), and the pin-hole model is a good approximation
for CCD cameras (after correcting for radial lens distor-
tion). The stereo cameras used in this work are assumed
L — CR(RP+R>A()T _ (RP+R)A()Cg (12) to have unit aspect rati_o and no ske_vv, and the pin-hole
models are parameterized by identical focal lenfth
The intersection of L with the laser pla§® can now For rectilinear stereo cameras with optical centres at
be expressed using equation (10) as: CLr =b(¥b7 0,0,1)", the projection matrices"P are
given by

Applying these to equation (9), the(Rker matrix for
the back-projection df& is

X =L =[CrRPRY)T — RPTROICLIN  (13)

f 0 0 £fb
Finally, the ideal projectiot& corresponding t&% is “Rp={ 0 f 0 0 (16)
obtained by projectin onto the left image plane: 001 0

Ly — Lpx where the positive sign is taken far and the nega-
L RetRoyT /Rt Res T tive for R. Now, substituting equation (16) ai@l gr =
o LP[CR(R P+RAX)T _(LWRX)(;?]Q - (¥b,0,0,1) " into equation (14), the homography be-
PCr("P7X) ' @ —"P("P""%)(Cr2) tween the projections of a point on the laser plane can
be expressed as:
Using the identity RPRX) TQ = @ T (RPTRR), and not- P
ing that(CEQ) is scalar, the common factors and col- ( Ab—D 2Bb 2Cbf )

Rs

lected to simplify the above expression to Lg = 0 —(Ab+D) 0 X

A . A 0 0 —(Ab+D)
= P(CRRT)(FPTRY) - PCRO) ((PHRR) (7)
_ (LP[CRQT B (CTQ)|]RP+) Rg (14) With R = (R Ry, 1T and k= (“&,-y,w)T, the above
R transformation can be evaluated as

that points on the laser plane induce a homography bef Ly

y
tween coordinates on the left and right image planes\ w

Equation (14) is of the forrhk = HR& and simply states LR (Ab—D)Rg+ 2BbRy+ 2Cb f
= —(Ab+D)Ry (18)
! —(Ab+D)



Expressed in inhomogeneous coordinates, the relationOptimization of equation (21) now proceeds using
ship betweehx andRx is standard techniques, settir%? = 0 and solving for
Ro R RR. Let Rg* represent the optimal projection resulting
Lg — _(Ab=D)"X+ 2BbRy+2Cbf (19) inthe minimum squared errcg’. It is straightforward
Ab+D to show that the optimal projection is given by
Yy = &y (20)

R = Fx—a(*x+ By+7H)/(0?+1) (31
Since the axes of and R are parallel (rectilinear
stereo), the notatioly £ 'y = Ry replaces equationand the corresponding minimum squared eEbis:
(20). Rectilinear stereo gives rise to epipolar lines
that are parallel to the-axis, so the validation algo- E* = ("x+ax+By+7H)%/(a®+1)  (32)
rithm need only consider possible correspondences on ) o . R
matching scanlines in the stereo images. Any méaRr completion, substituting equation (31) "‘ﬁld =Yy
surement error in the stripe detection process (see SBE (19) gives the corresponding optimal projection on
tion 5.1) is assumed to be in thedirection only, while the leftimage plane as
the y-coordinate is fixed by the height of the scanline. | ol R 2
Thus, they-coordinate of the optimal projections are X = (&~ X— & X—(By+yH]/(a”+1)  (33)
also fixed by the scanline, ig.=y, wherey is they- , e
coordinate of the candidate measuremértandRx. Finally, the optimal 3D reconstructiod* is recovered
Finally, substituting equations (19)-(20) with="y from equation (13). Evaluating (13) for rectilinear, pin-

into (15), the image plane err&rcan be expressed as gole cameras with the change of variables in equations
function of asingleunknown R&: (22)-(24), and expressing the result in inhomogeneous

coordinates, the relationship betweXh and the opti-
E = ("x+ &%+ By+7F)2+ (x— RR)2 (21) mal projectionR%* is:

b[By+7yf+(a—1)R%¥]

where the following change of variables in the plane X* (@t 1R+ By 7T
parameters is introduced (noting tiathas only three v | = —2by (34)
degrees of freedom due to the unconstrained scale): 5 (@)X pyvt
(a+DR& +By+yf
oo = (Ab—D)/(Ab+D) (22)
B = 2Bb/(Ab+ D) (23) Finally, substit.utinng(* from eguation (33) !nto the
B b/(Ab above, the optimal reconstruction from candidate mea-
Y = 2Cb/(Ab+D) (24) surement$x andRx on the scanline at heiglytis:
For the experimental scanner, withgiven by equation R [(a—1)(ax=Rx)—(a+1) (By+7)]b
(5), a, B andy can be written as: )A(* (a+1)(a'—xz—bRx)—E(al—l)(ﬁyﬁ-yf)
i Y= (a+1)(atx-g>(<?+<+azl)<ﬁ v (35)
o - _k1c036y+kzsm9y+k3 (25) S T Y+
cosby + ko sin6y + k3 (a+1)(atx=Fx)+(a—1)(By+7f)
1—k1)(6xsinby+ 6,cosby + B
B = (1~ k)8 iy — ky ) (26)  Now, let‘x;, i =1...n., andRxj, j = 1...nr rep-
cosByJ.r 2Sinéy +ks resent candidate measurements of the stripe on corre-
y = (ke —1) §|n9y (27) sponding scanlines at heigit Furthermore, lee rep-
cosby + ko sinby + ks resent the current measured encoder value for the scan-
. . ner (see Section 3.4). The validation problem, that is,
where 8, = me+c and the following change of Varl'determining which pair of measurements correspond to

ables is made in the system parameters: the primary reflection, can now be solved as follows:

k= —(b+X0)/(b—X0) @8 4 Light plane parametera, 8 andy are calculated
ke = Zo/(b—Xo) (29) from e and the system parameters using equations
ks = Do/(b—Xo) (30) (25)-(27) and (2).



2. For every possible pair of measureme(r‘rbs,ij), As noted above, valid corresponding measurements
the optimal reconstruction errd* is calculated must be identified before calculatifig,(e). However,
from equation (32). Then, the pa(irxi*,Rx’j*) with  since the correspondences are determined by minimiz-
the minimal reconstruction error are chosen as threy E* over all candidate pairs given the plane parame-
most likely valid measurements, given by: ters, the correspondences are also a function of the en-

LR _ LR coder_ count. Thus, th.e refined estimatemay relate
("%,7Xj) zarg(Lm;)r(]_)E (™%, xj, 0, B,¥) (36) to a different set of optimal correspondences than those
b from which it was calculated. To resolve this issue, the
] optimal correspondences and encoder count are calcu-

3. A final test, E*("x","xi, &, B,7) < Em, ensures |ateq recursively. In the first iteration, correspondences
that the optimal candidates are valid, wh&gis gare calculated using the measured encoder valte
calculated off-line from the expected measureme\ﬂad the initial estimates;, via equations (37)-(38). A
error. If this test is violated, no reconstruction ifew set of correspondences are then extracted from the
recovered in current frame. raw measurements using the refined encoder vejue

4. For valid measurements, the optimal reconstruln:t,-th_e new corresponderjces differ from the previo_us t-
tion )A(*('-xi*,Rx}‘) is finally calculated from equa-erat'on' an up_dat*ed estimate of the encoder vejue .

tion (35). The reconstructions from all scanline‘éaICUIated (u;mgo as the initial guess). The Process Is

in the current frame are added to the range map_repeated until a stable_ set of_correspondences is found.
The above process is applied to each captured frame,
and the optimal encoder cougitand valid correspond-

3.4 Laser Plane Error ing measurements are substituted into equation (35) to

The above solution is optimal with respect to the errgpally recover the optimal 3D profile of the laser.

of image plane measurements, and assumes that the pa-

rameters of the laser plane are known exactly. In pra@-5  Additional Constraints

tice, the encoder measurements are likely to suffer from

both random and systematic error due to acquisition dis already described, robust stripe detection is based
lay and quantization. Unlike the image plane error, tif® Mminimization of the image plane error in equation
encoder error is constant for all stripe measurementd&2). However, the minimum image plane error is a
a given frame and thus cannot be minimized indeperecessary but insufficient condition for identifying valid
dently for candidate measurements on each scanlineStereo measurements. In the practical implementation,

Lettx; andRx;, i = 1...nrepresent valid correspond{wo additional constraints are employed to improve the
ing measurements of the laser stripe onrteeanlines robustness of stripe detection.
in a frame. The reconstruction errgf (e) for each pair ~ The first constraint simply requires stripe candidates
can be treated as a function of the encoder count via taebe moving features; a valid measurement must not
system model in equations (25)-(27). The total erréppear at the same position in previous frames. This is
E;::(€) over all scanlines for a given encoder coerg implemented by processing only those pixels with suf-
calculated as: ficiently large intensity difference between successive

N frames. While this constraint successfully rejects static
Ep (€)= ZlEi*(e) (37) stripe-like edges or textures in most scenes, it has lit-
= tle effect on cross-talk or reflections, since these also
appear as moving features.

The second constraint is based on the fact that valid
measurements only occur within a sub-region of the im-
age plane, depending on the angle of the light plane.
From equation (34), the inhomogeneausordinate of

. . . ) ) ] _a optimal reconstructioX can be expressed as a func-
SinceEgy,(e) is a non-linear function, equation (38) isjon of the image plane projectidik = (R%,y)T as
implemented using the LM minimization from MIN-

PACK [17], with the measured value efas the initial 5_ —2bf

estimate. (o + DRR+ By + yf

Finally, an optimal estimate of the encoder coehis
calculated from the minimization

e" = arg ﬁgidEt’Bt(e)] (38)

(39)



Rearranging the above, the projectedoordinate of a overcome this problem, a strategy is now proposed to
point on the light plane may be expressed as a functioptimally estimatep using only image-based measure-

of depthZ and the heighy of the scanline: ments of a non-planar but otherwise arbitrary surface
with favourable reflectance properties (the requirement

Re — 7By+ 1 - 2of (40) of non-planarity is discussed below). This allows cali-

o+l  Z(a+1) bration to be performed cheaply and during normal op-

The extreme boundaries for valid measurements &fgton- . _
now be found by taking the limit of equation (40) for The calibration procedure begins by scanning the

points on the light plane near and far from the camer_%{.”pe across the target and recording the encoder and
Taking the limit for distant reflections gives: image plane measurements for each captured frame.

Since the system parameters are initially unknown, the

lim Rg — _ﬁy+ i (41) validation problem is approximated by recording only
7w O0+1 the brightest pair of features per scanline. 'L)a; and
Rxij, i = 1...nj, j = 1...t represent the centroids of

Taking the limitZ — 0 for close reflections gives thethe brightest corresponding featuresrgrscanlines of
other boundary af% — —e. Now, if w is the width  captured frames, and lef represent the measured en-
of the captured image, valid measurements on the rigifger value for each frame. As described earlier, im-
image plane at height must be constrained to the  age plane measurements have independent errors, while
coordinate ranges the encoder error couples all measurements in a given
Bv+yf framg. Thgs, opjtin_1a_| sy_stem parame_ters are determined
e (42) from iterative minimization of the stripe measurement
and encoder errors, based on the algorithm first de-
Following a similar development, it is straightforwar@cribed in Section 3.4. First, the total image plane error
to show that the limits of valid measurements on thg: is summed over all frames:
left image plane are:

R

W< X <
2

t N
Bv+rf o w Eot = E*(“%ij, "%, ), p) (44)
il <X < +5 (43) lei;

Stripe extraction is only applied to pixels within thavhereE* is defined in equation (32). The requirement
boundaries defined in (43)-(42); pixels outside theséa non-planar calibration target can now be justified.
ranges are immediately classified as invalid. In additi¢ior a planar target, the stripe appears as a straight line
to improving robustness, sub-region processing also &&d the image plane measurements obey a linear rela-
duces computational expense by halving the quantitynship of the formx;; = a;y;; +bj. Then, the total
of raw image data and decreasing the number of strigeorE;;; reduces to the form
candidates tested for correspondence.

t nj
. L Bo= 3 3 (A + Bj)? (45)
4 Active Calibration &is

Clearly, the sign ofA; and B; cannot be determined

In this section, determination of the unknown parame- equation (45), since the total error remains un-
ters in the model of the light stripe scanner are consi ianged after substitutingA: and—B;. The geomet-

j —bj.
ered. Letthe unknown parameters be represented byﬁ &l interpretation of this result is illustrated in Figure

vector 5, which shows the 2D analogue of a planar target scan.
P = (ki, k2, ks, B, 6z, Bo, m,C) For any set of encoder values and collinear points

whereky, k> andks were introduced in equations (28)X; measured ovet captured frames, there exist two
(30). Since most of the parameters relate to mechasymmetrically opposed laser plane generators capable
cal properties, the straightforward approach to calibref producing identical results. This ambiguity can be
tion is manual measurement. However, such an apercome by constraining the calibration target to be
proach would be both difficult and increasingly ina@on-planar. It may also be possible for certain non-
curate as parameters vary through mechanical wear.planar targets to produce ambiguous results, but the cur-



"%?]telfr’ﬁgf in-lier image plane measurements. At #i@iteration,
9 the model is considered to have converged when the

. fractional change in total err@; is less then a thresh-
scanning old §:

direction * *
Etot,k—l - Etot,k <

%
Xt Etot.kfl
The final parameter vectqs; is stored as the near-
optimal system model for processing regular scans us-
. ing the methods described in Section 3. A final check
scanning R .
direction for global optimality is performed by comparing the
minimum total errorE, , to a fixed threshold, based
light plane on an estimate of the image plane error. The rare case
generator of non-convergence (less than 10% of trials) is typically
due to excessive out-liers introduced by the sub-optimal

scan of a planar calibration target. The position of tigitial measurements. Non-convergence is resolved by
light plane generator is ambiguous. repeating the calibration process with a new set of data.

The calibration technique presented here is practi-
cal, fast and accurate, requiring only a single scan of

) ) ) any suitable non-planar scene. Furthermore, the method
rent implementation assumes that such an object Wllgs not rely on measurement or estimation of any met-

6 47
X1

rarely be enco_untereg. __ ric quantities, and so does not require accurate knowl-
An |n|t|.al_ estimatepg of the parameter vector is giveNsqge of camera parametérand f. Thus, image-based
by the minimization calibration allows the validation and correspondence
" P blems to be solved robustly and independently of re-
=argminE 46) PO .
Po = argminEe:(p) (46) . onstruction accuracy.

using the measured encoder valwgsand stereo cor-

respondencesx;; and Rxj;. Again, equation (46) is § |mp|ementation

implemented numerically using LM minimization in

MINPACK. The stripe measuremerits;; andRx;j are This section describes the signal processing used to im-

likely to contain gross errors resulting from the initiablement stereoscopic light stripe scanning on the exper-

coarse validation constraint (in the absence of knownental system introduced in Section 2. The output of

system parameters). Thus, the next calibration step tige scanner is a 384 288 element range map, with

fines the measurements by applying out-lier rejectiogach element recording the 3D position of the surface

Using ej and the initial estimat@y, the image plane as viewed from the right camera. During normal oper-

errorE*(xij, *xij, €}, pg) in equation (32) is calculatedation, the laser is scanned across a scene and the shaft

for each stereo pair. The measurements are then soggedoder and stereo images are recorded at regular 40 ms

in order of increasing error, and the top 20% are digtervals (25 Hz PAL frame-rate). The laser is mechan-

carded. ically geared to scan at about one pixels of horizontal
The system parameters and encoder values are thestion per captured frame, so a complete scan requires

sequentially refined in an iterative process. The initiapproximately 384 processed frames (15 seconds).

estimatepg, is only optimal with respect to image plane

error, assuming exact encoder vaIu}?s Tq account 5.1 Light Stripe Measurement

for encoder error, the encoder value is refined for each

frame using the method described in Section 3.4 witlaser stripe extraction is performed using intensity data

the initial estimatepj of the system model. The resultonly, which is calculated by taking the average of the

ing encoder estimates , are optimal with respect tocolour channels. As noted in Section 3.5, the motion

pg- A refined system moded] is then obtained from of the stripe distinguishes it from the static background,

equation (46) using the latest encoder estimq{gand which is eliminated by subtracting the intensity values
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tensity profile within these bounds.

The result of the above process is a set of candidate
stripe locations on each scanline of the stereo images.
Along with the measured encoder value, these candi-
dates are analyzed using the techniques described in
Section 3 to refine the laser plane angle, identify valid
corresponding measurements and reconstruct an opti-
; mal 3D profile. The reconstruction on each scanline
S 1 is stored in the range map at the location of the corre-
sponding measurement in the right image.

intensity
profile

pixel position

5.2 Range Data Postprocessing

Figure 6: Thresholds for robust extraction of multi- o )
modal pulses. Post-processing is appliedter each complete scan to

further refine the measured data. Despite robust scan-

ning, the raw range map may still contain outliers as

the stripe validation conditions are occasionally satis-
in consecutive frames and applying a minimum diffefied by spurious noise. Fortunately, the sparseness of
ence threshold. The resultimfifference imagés mor- the outliers make them easy to detect and remove using
phologically eroded and dilated to reduce noise amdsimple thresholding operation: the minimum distance
improve the likelihood of stripe detection. In Sectiobetween each 3D point and its eight neighbours is cal-
3.5 it was also shown that valid measurements ocaulated, and when this exceeds a threshold (10 mm in
in a predictable sub-region of the image. This is cahe current implementation), the associated point is re-
culated from equations (43)-(42) and the measured @meved from the range map.
coder value, and pixels outside this region are set to zerHoles (pixels for which range data could not be re-
in the difference image. Further processing is only apevered) may occur in the range map due to specu-
plied to pixels with non-zero difference. lar reflections, poor surface reflectivity, random noise

The intensity profile on each scanline is then exarand outlier removal. A further post-processing step fills

ined to locate candidate stripe measurements. If teese gaps with interpolated depth data. Each empty
stripe appeared as a simple unimodal pulse, the lopatel is checked to determine whether it is bracketed by
maxima would be sufficient to detect candidates. Howalid data within a vertical or horizontal distance of two
ever, mechanisms including sensor noise, surface tpkels. To avoid interpolating across depth discontinu-
ture and saturation of the CCD interfere and perturb thies, the distance between the bracketing points must be
intensity profile. These issues are overcome by extraletss than a fixed threshold (30 mm in the current imple-
ing pulses using a more sophisticated strategy of intenentation). Empty pixels satisfying these constraints
sity edge extraction and matching. On each scanlirge assigned a depth linearly interpolated between the
left and right edges are identified as an increase or dalid bracketing points. The effect of both outlier rejec-
crease in the intensity profile according to the threstien and interpolation on a raw scan is demonstrated in
olds defined in Figure 6. Processing pixels from left téigure 7.
right, the location of a left edge is detected when the Finally, a colour image is registered with the range
intensity difference between successive pixels exceedap. Since robust scanning allows the sensor to oper-
a thresholdde, and the closest local intensity maximate in normal light, the cameras used for stripe detection
to the right ofx; exceeds the intensity at by a larger also capture colour information. However, depth and
thresholdd,. Right edges; are extracted by process<olour cannot be sampled simultaneously for any given
ing the scanline in reverse. Finally, the edges are gixel, since the laser masks the colour of the surface.
amined to identify left/right pairs without interveningnstead, a complete range map is captured before regis-
edges. Whemx andx; are closer than a threshold distering a colour image from the right camera (assuming
tancedy, the pair are assumed to delimit a candidatee cameras have not moved). Each pixel in this final
pulse. The pulse centroid is calculated to sub-pixel @amage yields the colour of the point measured in the
curacy as the mean pixel position weighted by the inerresponding element of the range map.
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single-camera reconstructions. The single-camera re-
constructionsX_ and Xg are calculated independently
from measurements on the left and right image planes,
and discarded whejiX| — Xg| exceeds a fixed distance
threshold. For valid measurements, the final reconstruc-
tion is calculated ag (X, + Xg).

The performance of the three methods in the presence
of a phantom stripe (secondary reflection) was assessed
using the test scene shown in Figure 8. A mirror at the
rear of the scene creates a reflection of the objects and
scanning laser, simulating the effect of cross-talk and
secondary reflections. To facilitate a fair comparison,
the three methods operated simultaneously on the same
raw measurements captured during a single scan of the
scene.

Figure 9(a) shows the colour/range data captured by
the single-camera scanner. As a result of erroneous as-
sociations between the phantom stripe and laser plane,
numerous phantom surfaces appear in the scan without
any physical counterpart. Figure 9(b) shows the output
of the double-camera scanner, which successfully re-
moves the spurious surfaces. However, portions of real
surfaces have also been rejected, since the algorithm is
unable to disambiguate the phantom stripe from the pri-
mary reflection when both appear in the scene. Finally,
Figure 9(c) shows the result using the techniques pre-
sented in this paper (see also Extension 1). The por-
Figure 7: Removal of impulse noise and holes (elimiions of the scene missing from Figure 9(b) are suc-
nated features are circled on the left). cessfully detected using the proposed robust scanner,
while the phantom stripe has been completely rejected.
Also noteworthy is the implicitly accurate registration
of colour and range.

(a) Before post-processing
v

(b) After post-processing

6 EXperimental Results The single-camera result highlights the need for ro-
bust methods when using light stripe scanners on a do-
6.1 Robustness mestic robot. While the double-camera scanner suc-

cessfully rejects reflections and cross-talk, the high re-
To evaluate the performance of the proposed robust gztion rate for genuine measurements may cause prob-
tive sensing method, the scanner is implemented aldegs for segmentation or other subsequent processing.
with two other common techniques on the same expénm-contrast, segmentation and object classification have
imental platform. The first method is a simple singldseen successfully applied to the colour/range data from
camera scanner without any optimal or robust propehe proposed robust scanner to facilitate high-level do-
ties. A single-camera reconstruction is calculated fromestic tasks [25]. Extensions 2 and 3 provide addi-
equation (13), using image plane measurements frdiomal colour/range maps of typical domestic objects to
the right camera only. Since no validation is possiemonstrate the robustness of our sensor in this appli-
ble in this configuration, the stripe is simply detectechtion.
as the brightest feature on each scanline. The sec-
ond alternative implementa_\tion will be r_eferred to as@o  Error Analysis
double-cameracanner. This approach is based on the
robust techniques proposed in [18, 27], which explolthe results in this section experimentally validate of the
the requirement of consensus between two independgygtem and noise models used to derive the theoreti-
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Figure 8: Robust scanning experiment.

cal results. In particular, the encoder angle estimation
and calibration techniques described in Sections 3.4 and
4 are shown to be sufficiently accurate that any uncer-
tainty in the system parameters and encoder values ca
be ignored for the purposes of optimal validation and
reconstruction.
First, the calibration procedure described in Section
4 was performed using the corner formed by two boxes
as the calibration target, and the valid image plane
measurements and encoder values for each frame weré
recorded. Using the estimated system parameters, the
optimal projections-Rg* and residualg™Rx — -Rg)
were calculated from equations (31) and (33) for all
measurements. Figure 10 shows the histogram of resid- (b) Double-camera
uals for measurements on the right image plane, and
a Gaussian distribution with the same parameters for
comparison. The residuals are approximately Gaussian
distributed as expected, and assuming the light stripe
measurement errors are similarly distributed, the error
model proposed in Section 3.1 is found to be valid. The
variance of the image plane measurements are shown i
the first two rows of Table 1.
The variance of the system parameters and encode
values were determined using statistical bootstrapping.
In this process, the residuals were randomly and uni-
formly sampled (with replacement) from the initial
data, and added to the optimal projectié&* to gen-
erate a new set of pseudo-measurements. The syste
parameters were then estimated for each new set of
pseudo-measurements using the calibration process de-
scribed in Section 4. A total of 5000 re-sampling ex-
periments were performed, and the resulting varianceRigure 9: Comparison of range scanner results in the
the estimated system parameters are shown in the thirdsence of secondary reflections.

(c) Robust scanner
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14000 ‘ ‘ ‘ ‘ ‘ from the covariance matrix qf.

Choosing a test point near the centre of the image
plane, the contribution of each parameter to the total
10000 HEEn 1 variance was calculated from equation (48) and the re-

12000

8 sooo - — i ] sults are shown in the far right column of Table 1. Im-

§ portantly, the errors due & andx are two orders of

g 6000 F ] magnitude greater than the contribution from the sys-
T 00 | tem parameters and encoder value. For comparison, the

variance inR%* measured from the bootstrapping pro-
. . cess was 0.0035 pixélswhich agrees well with the
0 ‘ b sum of contributions frontx and®x. Finally, it should
08 ez o 0 o1 02 03 be noted that the variance B&* is about half the vari-
Residual error (pixels) o X X X
ance offx, indicating that the optimal reconstruction

Figure 10: Distribution of residual reconstruction errof3as a higher precision than a single-camera reconstruc-

on the image plane. tion.
These results demonstrate the reliability of the
image-based techniques presented in Sections 3.4 and
Table 1: System parameter errors and contribution %for estimating the e ncoder value and ca!ib rating the
reconstruction error. system parameters in the presence of.n0|sy measure-
ments. Furthermore, the main assumptions in deriving
pi i var(p;) var(Rx"); equations (31) and (32) are now justified: any uncer-
X, 59.2 8< 1023 2x103 tainty in the system parameters and encoder value can
Xr A7.4 7% 103 2% 103 be reasonably ignored for the purpose of validation and

y 6.0 0.0 0.0 reconstruction.

e 451.5 5x10°° 2x10°
ki -1.1033 2<108% 1x10°
k» 0.1696 4x108 2x10°8
ks 0.0717 1x108% 2x10°
6, -0.0287 3x1010 2x1012
6, 00094 5<108 2x10°6

2000 -

7 Discussion

In addition to providing a mechanism for validation, the
error distanc&™ in equation (32) could be used to mea-
g 6 sure the random error of range points. As discussed in
Bo -0.0004  5¢<10 16 2x 10_5 Section 3.1, the error variance of a 3D reconstruction
m 0.001105 10_10 3x 10_5 increases with depth as the reconstruction problem be-
c 04849 Ix10° 4x10° comes ill-conditioned. This systematic uncertainty can
be calculated directly from the reconstruction in equa-
tion (35). In contrastE* measures the random uncer-
column of Table 1. tainty due to sensor noise. A suitable function of these
Finally, the optimality of the reconstruction is asSystematic and random components could be formu-
sessed by calculating the contribution from each pated to provide a unique confidence interval for each
rameter to the variance of the Opt|ma| project%’ﬁ 3D pOint, which would be useful in Subsequent process-
in equation (31). Representing the components of t. For example, parametric surface fitting could be
parameter vector gs= {p;}, and assuming the param©optimized with respect to measurement error by weight-
eters have independent noise, the contribution of paraft €ach point with the confidence value.
eterp; (with all other parameters fixed) to the variance One of the main limitations of light stripe scanning

of Rg*, represented as V&X*);, is calculated as (compared to methods such as passive stereo) is the ac-
quisition rate. In the current implementation, the PAL
8R>'z*
Rox\, ) .
var("X")i = ( oD ) -var(pi) (48) cycle to capture a complete half-PAL resolution range
P map of 384 stripe profiles. Clearly, such a long acqui-

frame-rate of 25 Hz results in a 15 second measurement
The independence of the parameters is readily verifigition time renders the sensor unsuitable for dynamic
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scenes. However, a more subtle issue is that the robo
must remain stationary during a scan to ensure accurat
registration of the measured profiles. Obviously, the ac-
quisition rate could be improved using high-speed cam-
eras and dedicated image processing hardware; high
speed CMOS cameras are now capable of frame-rate!
exceeding 1000 Hz. Assuming the image processing
could be accelerated to match this speed, the sensa
could be capable of acquiring 2-3 range maps per sec:
ond. An example of a high-speed monocular light stripe
sensor using a “smart” retina is described in [8]. Figure 11: Scan of a highly polished object. The light
To minimize complexity and cost, the experiment&itripe (with specular reflections) is shown on the left,
prototype uses a red laser diode to generate the lighd the resulting range map is shown on the right.
plane. Consequently, the scanner only senses surfaces
which contain a high component of red. Black, blue

and green surfaces reflect insufficient red laser light he liaht strioe in th f d
and are effectively invisible to the sensor. Since t entify the light stripe in the presence of secondary re-

light plane is not required to be coherent or monochr ections, cross-talk and other sources of interference.

matic, the laser diode could be replaced by a white "gﬁpe validation and reconstruction framework is based

source such as a collimated incandescent bulb. Hogit Minimization of error distances measured on the im-

ever, laser diodes have particular design advantages"’m.(-a pl_ane. pnhke_prewous stereo scanners, this formu-
cluding physical compactness, low power consumpti&)?{'On is optimal with respect to meas_urement. error. An
and heat generation, and are thus more desirable tHA9€-0ased procedure for calibrating the light plane
other light sources. To solve the colour deficiency proBgrgmeters from the scan of an arbitrary non-planar tar-
lem while retaining these advantages, the light plaﬂgt is also demonstrated._
could be generated using a triplet of red, green and bludXesults from the experimental scanner demonstrate
laser diodes. Currently, the main obstacle to this ajpat our robust method is more effective at recovering
proach is the high cost of green and blue laser diodesange data in the presence of reflections and cross-talk
As with colour, surfaces with high specular and lof@n comparable light stripe methods. Experimental re-
Lambertian reflection may appear invisible, since insufults also confirm the assumptions of our noise model,
ficient light is reflected back to the sensor. This li2"d show that image-based calibration produces reli-
itation is common to all active light sensors and c#P!€ results in the presence of noisy image plane mea-
also defeat passive stereopsis, since the surface appedigments. Finally, the optimal reconstructions from
differently to each viewpoint. To illustrate this effectoUr Proposed scanner are shown to be more precise than
Figure 11 shows the raw image and resulting scan ofhg reconstructions from a single-camera scanner.
highly polished object. The only visible regions appear- The ability to solve the stripe association problem
ing in the range map are the high curvature edges th2ay provide interesting future research in the develop-
provide a specular reflection directly back to the sensgtent of a multi-stripe scanner. Multi-stripe scanners
The best that can be achieved is to ensure that second@ye the potential to solve a number of issues asso-

reflections do not interfere with range data acquisitiofiated with single-stripe scanners: illuminating a tar-
as demonstrated in this result. get with two stripes could double the acquisition rate,

and projecting the stripes from different positions re-

veals points that would otherwise be hidden in shadow.
8 Summary and Conclusions Single-camera multi-stripe systems rely on colour [23],

sequences of illumination [15] or epipolar constraints
We have presented the theoretical framework and if#4] to disambiguate the stripes. However, the method
plementation of a robust light stripe scanner for a dproposed in this paper could allow the stripes to be
mestic robot, capable of measuring arbitrary scenestifiquely identified using the same principles that pro-
ambient indoor light. The scanner uses the light planisle validation for a single stripe.
orientation and stereo camera measurements to robustliginally, the over-arching goal in this development is
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to allow a robot to model and manipulate arbitrary ob-

jects in a domestic environment. Our other results

in

this area [25] already demonstrate that the scanner pro-
vides sufficiently robust measurements to achieve this

goal.
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Appendix: Index to Multi-Media

Extensions

[6]

The mult-imedia extensions to this article can be

found online by following the hyperlinks from
WWW.ijrr.org.
www.irrc.monash.edu.au/laserscans.

Extension Mediatype Description

1 Data VRML 97 model (half
scanner resolution) of
mirror scene, (requires
VRML plug-in).

2 Data VRML 97 model (half
scanner resolution) of
typical domestic objects.

3 Data VRML 97 model (half
scanner resolution) of
typical domestic objects.
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